ﻻ يوجد ملخص باللغة العربية
Virtual reality (VR) over wireless is emerging as an important use case of 5G networks. Immersive VR experience requires the delivery of huge data at ultra-low latency, thus demanding ultra-high transmission rate. This challenge can be largely addressed by the recent network architecture known as mobile edge computing (MEC), which enables caching and computing capabilities at the edge of wireless networks. This paper presents a novel MEC-based mobile VR delivery framework that is able to cache parts of the field of views (FOVs) in advance and run certain post-processing procedures at the mobile VR device. To optimize resource allocation at the mobile VR device, we formulate a joint caching and computing decision problem to minimize the average required transmission rate while meeting a given latency constraint. When FOVs are homogeneous, we obtain a closed-form expression for the optimal joint policy which reveals interesting communications-caching-computing tradeoffs. When FOVs are heterogeneous, we obtain a local optima of the problem by transforming it into a linearly constrained indefinite quadratic problem then applying concave convex procedure. Numerical results demonstrate great promises of the proposed mobile VR delivery framework in saving communication bandwidth while meeting low latency requirement.
Computation task service delivery in a computing-enabled and caching-aided multi-user mobile edge computing (MEC) system is studied in this paper, where a MEC server can deliver the input or output datas of tasks to mobile devices over a wireless mul
Mobile virtual reality (VR) delivery is gaining increasing attention from both industry and academia due to its ability to provide an immersive experience. However, achieving mobile VR delivery requires ultra-high transmission rate, deemed as a first
Mobile-edge computing (MEC) has recently emerged as a promising paradigm to liberate mobile devices from increasingly intensive computation workloads, as well as to improve the quality of computation experience. In this paper, we investigate the trad
Under the paradigm of caching, partial data is delivered before the actual requests of users are known. In this paper, this problem is modeled as a canonical distributed source coding problem with side information, where the side information represen
For a caching system with multiple users, we aim to characterize the memory-rate tradeoff for caching with uncoded cache placement, under nonuniform file popularity. Focusing on the modified coded caching scheme (MCCS) recently proposed by Yu, etal.,