ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring the Variation in Nuclear Charge Radius of Xe Isotopes by EUV Spectroscopy of Highly-Charged Na-like Ions

317   0   0.0 ( 0 )
 نشر من قبل Yuri Ralchenko
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The variation in mean-square nuclear charge radius of xenon isotopes was measured utilizing a new method based on extreme ultraviolet spectroscopy of highly charged Na-like ions. The isotope shift of the Na-like D1 (3s $^{2}$S$_{1/2}$ - 3p $^2$P$_{1/2}$) transition between the $^{124}$Xe and $^{136}$Xe isotopes was experimentally determined using the electron beam ion trap facility at the National Institute of Standards and Technology. The mass shift and the field shift coefficients were calculated with enhanced precision by relativistic many-body perturbation theory and multi-configuration Dirac-Hartree-Fock method. The mean-square nuclear charge radius difference was found to be $delta<r^2>^{136, 124}$ = 0.269(0.042) fm$^2$. Our result has smaller uncertainty than previous experimental results and agrees with the recommended value by Angeli and Marinova [I. Angeli and K. P. Marinova, At. Data and Nucl. Data Tables {bf 99}, 69-95 (2013)].


قيم البحث

اقرأ أيضاً

The most precise to-date evaluation of the nuclear recoil effect on the $n=1$ and $n=2$ energy levels of He-like ions is presented in the range $Z=12-100$. The one-electron recoil contribution is calculated within the framework of the rigorous QED ap proach to first order in the electron-to-nucleus mass ratio $m/M$ and to all orders in the parameter $alpha Z$. The two-electron $m/M$ recoil term is calculated employing the $1/Z$ perturbation theory. The recoil contribution of the zeroth order in $1/Z$ is evaluated to all orders in $alpha Z$, while the $1/Z$ term is calculated using the Breit approximation. The recoil corrections of the second and higher orders in $1/Z$ are taken into account within the nonrelativistic approach. The obtained results are compared with the previous evaluation of this effect [A. N. Artemyev et al., Phys. Rev. A 71, 062104 (2005)].
Relativistic calculations of the isotope shifts of energy levels in highly charged Li-like ions are performed. The nuclear recoil (mass shift) contributions are calculated by merging the perturbative and large-scale configuration-interaction Dirac-Fo ck-Sturm (CI-DFS) methods. The nuclear size (field shift) contributions are evaluated by the CI-DFS method including the electron-correlation, Breit, and QED corrections. The nuclear deformation and nuclear polarization corrections to the isotope shifts in Li-like neodymium, thorium, and uranium are also considered. The results of the calculations are compared with the theoretical values obtained with other methods.
Precision spectroscopy of atomic systems is an invaluable tool for the advancement of our understanding of fundamental interactions and symmetries. Recently, highly charged ions (HCI) have been proposed for sensitive tests of physics beyond the Stand ard Model and as candidates for high-accuracy atomic clocks. However, the implementation of these ideas has been hindered by the parts-per-million level spectroscopic accuracies achieved to date. Here, we cool a trapped HCI to the lowest reported temperatures, and introduce coherent laser spectroscopy on HCI with an eight orders of magnitude leap in precision. We probe the forbidden optical transition in $^{40}$Ar$^{13+}$ at 441 nm using quantum-logic spectroscopy and measure both its excited-state lifetime and $g$-factor. Our work ultimately unlocks the potential of HCI, a large, ubiquitous atomic class, for quantum information processing, novel frequency standards, and highly sensitive tests of fundamental physics, such as searching for dark matter candidates or violations of fundamental symmetries.
We study electronic transitions in highly-charged Cf ions that are within the frequency range of optical lasers and have very high sensitivity to potential variations in the fine-structure constant, alpha. The transitions are in the optical despite t he large ionisation energies because they lie on the level-crossing of the 5f and 6p valence orbitals in the thallium isoelectronic sequence. Cf16+ is a particularly rich ion, having several narrow lines with properties that minimize certain systematic effects. Cf16+ has very large nuclear charge and large ionisation energy, resulting in the largest alpha-sensitivity seen in atomic systems. The lines include positive and negative shifters.
74 - M.S. Ebrahimi , Z. Guo , M. Vogel 2018
We have performed a detailed experimental study of resistive cooling of large ensembles of highly charged ions such as Ar$^{13+}$ in a cryogenic Penning trap. Different from the measurements reported in [M. Vogel et al., Phys. Rev. A, 043412 (2014)], we observe purely exponential cooling behavior when conditions are chosen to allow collisional thermalization of the ions. We provide evidence that in this situation, resistive cooling time constants and final temperatures are independent of the initial ion energy, and that the cooling time constant of a thermalized ion ensemble is identical to the single-ion cooling time constant. For sufficiently high ion number densities, our measurements show discontinuities in the spectra of motional resonances which indicate a transition of the ion ensemble to a fluid-like state when cooled to temperatures below approximately 14 K. With the final ion temperature presently being 7.5 K, ions of the highest charge states are expected to form ion crystals by mere resistive cooling, in particular not requiring the use of laser cooling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا