ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical transitions in highly-charged californium ions with high sensitivity to variation of the fine-structure constant

135   0   0.0 ( 0 )
 نشر من قبل Julian Berengut
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study electronic transitions in highly-charged Cf ions that are within the frequency range of optical lasers and have very high sensitivity to potential variations in the fine-structure constant, alpha. The transitions are in the optical despite the large ionisation energies because they lie on the level-crossing of the 5f and 6p valence orbitals in the thallium isoelectronic sequence. Cf16+ is a particularly rich ion, having several narrow lines with properties that minimize certain systematic effects. Cf16+ has very large nuclear charge and large ionisation energy, resulting in the largest alpha-sensitivity seen in atomic systems. The lines include positive and negative shifters.



قيم البحث

اقرأ أيضاً

Highly charged ions (HCIs) are promising candidates for the next generation of atomic clocks, owing to their tightly bound electron cloud, which significantly suppresses the common environmental disturbances to the quantum oscillator. Here we propose and pursue an experimental strategy that, while focusing on various HCIs of a single atomic element, keeps the number of candidate clock transitions as large as possible. Following this strategy, we identify four adjacent charge states of nickel HCIs that offer as many as six optical transitions. Experimentally, we demonstrated the essential capability of producing these ions in the low-energy compact Shanghai-Wuhan Electron Beam Ion Trap. We measured the wavelengths of four magnetic-dipole ($M$1) and one electric-quadrupole ($E$2) clock transitions with an accuracy of several ppm with a novel calibration method; two of these lines were observed and characterized for the first time in controlled laboratory settings. Compared to the earlier determinations, our measurements improved wavelength accuracy by an order of magnitude. Such measurements are crucial for constraining the range of laser wavelengths for finding the needle in a haystack narrow lines. In addition, we calculated frequencies and quality factors, evaluated sensitivity of these six transitions to the hypothetical variation of the electromagnetic fine structure constant $alpha$ needed for fundamental physics applications. We argue that all the six transitions in nickel HCIs offer intrinsic immunity to all common perturbations of quantum oscillators, and one of them has the projected fractional frequency uncertainty down to the remarkable level of 10$^{-19}$.
We report linear polarization measurements of x rays emitted due to dielectronic recombination into highly charged krypton ions. The ions in the He-like through O-like charge states were populated in an electron beam ion trap with the electron beam e nergy adjusted to recombination resonances in order to produce $Kalpha$ x rays. The x rays were detected with a newly developed Compton polarimeter using a beryllium scattering target and 12 silicon x-ray detector diodes sampling the azimuthal distribution of the scattered x rays. The extracted degrees of linear polarization of several dielectronic recombination transitions agree with results of relativistic distorted--wave calculations. We also demonstrate a high sensitivity of the polarization to the Breit interaction, which is remarkable for a medium-$Z$ element like krypton. The experimental results can be used for polarization diagnostics of hot astrophysical and laboratory fusion plasmas.
82 - Paul Indelicato 2019
The current status of bound state quantum electrodynamics calculations of transition energies for few-electron ions is reviewed. Evaluation of one and two body QED correction is presented, as well as methods to evaluate many-body effects that cannot beevaluated with present-day QED calculations. Experimental methods, their evolution over time, as well as progress in accuracy are presented. A detailed, quantitative, comparison between theory and experiment is presented for transition energies in few-electron ions. In particular the impact of the nuclear size correction on the quality of QED tests as a function of the atomic number is discussed.The cases of hyperfine transition energies and of bound-electron Land{e} $g$-factor are also considered.
Level crossings in the ground state of ions occur when the nuclear charge Z and ion charge Z_ion are varied along an isoelectronic sequence until the two outermost shells are nearly degenerate. We examine all available level crossings in the periodic table for both near neutral ions and highly charged ions (HCIs). Normal E1 transitions in HCIs are in X-ray range, however level crossings allow for optical electromagnetic transitions that could form the reference transition for high accuracy atomic clocks. Optical E1 (due to configuration mixing), M1 and E2 transitions are available in HCIs near level crossings. We present scaling laws for energies and amplitudes that allow us to make simple estimates of systematic effects of relevance to atomic clocks. HCI clocks could have some advantages over existing optical clocks because certain systematic effects are reduced, for example they can have much smaller thermal shifts. Other effects such as fine-structure and hyperfine splitting are much larger in HCIs, which can allow for richer spectra. HCIs are excellent candidates for probing variations in the fine-structure constant, alpha, in atomic systems as there are transitions with the highest sensitivity to alpha-variation.
Radio-frequency electric-dipole transitions between nearly degenerate, opposite parity levels of atomic dysprosium (Dy) were monitored over an eight-month period to search for a variation in the fine-structure constant, $alpha$. The data provide a ra te of fractional temporal variation of $alpha$ of $(-2.4pm2.3)times10^{-15}$ yr$^{-1}$ or a value of $(-7.8 pm 5.9) times 10^{-6}$ for $k_alpha$, the variation coefficient for $alpha$ in a changing gravitational potential. All results indicate the absence of significant variation at the present level of sensitivity. We also present initial results on laser cooling of an atomic beam of dysprosium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا