ﻻ يوجد ملخص باللغة العربية
Precision spectroscopy of atomic systems is an invaluable tool for the advancement of our understanding of fundamental interactions and symmetries. Recently, highly charged ions (HCI) have been proposed for sensitive tests of physics beyond the Standard Model and as candidates for high-accuracy atomic clocks. However, the implementation of these ideas has been hindered by the parts-per-million level spectroscopic accuracies achieved to date. Here, we cool a trapped HCI to the lowest reported temperatures, and introduce coherent laser spectroscopy on HCI with an eight orders of magnitude leap in precision. We probe the forbidden optical transition in $^{40}$Ar$^{13+}$ at 441 nm using quantum-logic spectroscopy and measure both its excited-state lifetime and $g$-factor. Our work ultimately unlocks the potential of HCI, a large, ubiquitous atomic class, for quantum information processing, novel frequency standards, and highly sensitive tests of fundamental physics, such as searching for dark matter candidates or violations of fundamental symmetries.
We report linear polarization measurements of x rays emitted due to dielectronic recombination into highly charged krypton ions. The ions in the He-like through O-like charge states were populated in an electron beam ion trap with the electron beam e
An overview is presented of laser spectroscopy experiments with cold, trapped, highly-charged ions, which will be performed at the HITRAP facility at GSI in Darmstadt (Germany). These high-resolution measurements of ground state hyperfine splittings
A mixed-species geometric phase gate has been proposed for implementing quantum logic spectroscopy on trapped ions that combines probe and information transfer from the spectroscopy to the logic ion in a single pulse. We experimentally realize this m
We present a quantum logic scheme to detect atomic and molecular ions in different states of angular momentum based on their magnetic $g$-factors. The state-dependent magnetic $g$-factors mean that electronic, rotational or hyperfine states may be di
The present status of tests of QED with highly charged ions is reviewed. The theoretical predictions for the Lamb shift and the transition energies are compared with available experimental data. Recent achievements in studies of the hyperfine splitti