ترغب بنشر مسار تعليمي؟ اضغط هنا

Irregular conformal blocks and connection formulae for Painleve V functions

157   0   0.0 ( 0 )
 نشر من قبل Oleg Lisovyy
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove a Fredholm determinant and short-distance series representation of the Painleve V tau function $tau(t)$ associated to generic monodromy data. Using a relation of $tau(t)$ to two different types of irregular $c=1$ Virasoro conformal blocks and the confluence from Painleve VI equation, connection formulas between the parameters of asymptotic expansions at $0$ and $iinfty$ are conjectured. Explicit evaluations of the connection constants relating the tau function asymptotics as $tto 0,+infty,iinfty$ are obtained. We also show that irregular conformal blocks of rank 1, for arbitrary central charge, are obtained as confluent limits of the regular conformal blocks.



قيم البحث

اقرأ أيضاً

255 - A. Its , O. Lisovyy , Yu. Tykhyy 2014
The short-distance expansion of the tau function of the radial sine-Gordon/Painleve III equation is given by a convergent series which involves irregular $c=1$ conformal blocks and possesses certain periodicity properties with respect to monodromy da ta. The long-distance irregular expansion exhibits a similar periodicity with respect to a different pair of coordinates on the monodromy manifold. This observation is used to conjecture an exact expression for the connection constant providing relative normalization of the two series. Up to an elementary prefactor, it is given by the generating function of the canonical transformation between the two sets of coordinates.
We study the relation of irregular conformal blocks with the Painleve III$_3$ equation. The functional representation for the quasiclassical irregular block is shown to be consistent with the BPZ equations of conformal field theory and the Hamilton-J acobi approach to Painleve III$_3$. It leads immediately to a limiting case of the blow-up equations for dual Nekrasov partition function of 4d pure supersymmetric gauge theory, which can be even treated as a defining system of equations for both $c=1$ and $ctoinfty$ conformal blocks. We extend this analysis to the domain of strong-coupling regime where original definition of conformal blocks and Nekrasov functions is not known and apply the results to spectral problem of the Matheiu equations. Finally, we propose a construction of irregular conformal blocks in the strong coupling region by quantization of Painleve III$_3$ equation, and obtain in this way a general expression, reproducing $c=1$ and quasiclassical $ctoinfty$ results as its particular cases. We have also found explicit integral representations for $c=1$ and $c=-2$ irregular blocks at infinity for some special points.
386 - A. Its , O. Lisovyy , A. Prokhorov 2016
We discuss an extension of the Jimbo-Miwa-Ueno differential 1-form to a form closed on the full space of extended monodromy data of systems of linear ordinary differential equations with rational coefficients. This extension is based on the results o f M. Bertola generalizing a previous construction by B. Malgrange. We show how this 1-form can be used to solve a long-standing problem of evaluation of the connection formulae for the isomonodromic tau functions which would include an explicit computation of the relevant constant factors. We explain how this scheme works for Fuchsian systems and, in particular, calculate the connection constant for generic Painleve VI tau function. The result proves the conjectural formula for this constant proposed in cite{ILT13}. We also apply the method to non-Fuchsian systems and evaluate constant factors in the asymptotics of Painleve II tau function.
We show that the conformal blocks constructed in the previous article by the first and the third author may be described as certain integrals in equivariant cohomology. When the bundles of conformal blocks have rank one, this construction may be comp ared with the old integral formulas of the second and the third author. The proportionality coefficients are some Selberg type integrals which are computed. Finally, a geometric construction of the tensor products of vector representations of the Lie algebra $frak{gl}(m)$ is proposed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا