ترغب بنشر مسار تعليمي؟ اضغط هنا

Irregular conformal blocks, Painleve III and the blow-up equations

154   0   0.0 ( 0 )
 نشر من قبل Artem Stoyan
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the relation of irregular conformal blocks with the Painleve III$_3$ equation. The functional representation for the quasiclassical irregular block is shown to be consistent with the BPZ equations of conformal field theory and the Hamilton-Jacobi approach to Painleve III$_3$. It leads immediately to a limiting case of the blow-up equations for dual Nekrasov partition function of 4d pure supersymmetric gauge theory, which can be even treated as a defining system of equations for both $c=1$ and $ctoinfty$ conformal blocks. We extend this analysis to the domain of strong-coupling regime where original definition of conformal blocks and Nekrasov functions is not known and apply the results to spectral problem of the Matheiu equations. Finally, we propose a construction of irregular conformal blocks in the strong coupling region by quantization of Painleve III$_3$ equation, and obtain in this way a general expression, reproducing $c=1$ and quasiclassical $ctoinfty$ results as its particular cases. We have also found explicit integral representations for $c=1$ and $c=-2$ irregular blocks at infinity for some special points.



قيم البحث

اقرأ أيضاً

271 - A. Its , O. Lisovyy , Yu. Tykhyy 2014
The short-distance expansion of the tau function of the radial sine-Gordon/Painleve III equation is given by a convergent series which involves irregular $c=1$ conformal blocks and possesses certain periodicity properties with respect to monodromy da ta. The long-distance irregular expansion exhibits a similar periodicity with respect to a different pair of coordinates on the monodromy manifold. This observation is used to conjecture an exact expression for the connection constant providing relative normalization of the two series. Up to an elementary prefactor, it is given by the generating function of the canonical transformation between the two sets of coordinates.
We prove a Fredholm determinant and short-distance series representation of the Painleve V tau function $tau(t)$ associated to generic monodromy data. Using a relation of $tau(t)$ to two different types of irregular $c=1$ Virasoro conformal blocks an d the confluence from Painleve VI equation, connection formulas between the parameters of asymptotic expansions at $0$ and $iinfty$ are conjectured. Explicit evaluations of the connection constants relating the tau function asymptotics as $tto 0,+infty,iinfty$ are obtained. We also show that irregular conformal blocks of rank 1, for arbitrary central charge, are obtained as confluent limits of the regular conformal blocks.
We study short--time existence, long--time existence, finite speed of propagation, and finite--time blow--up of nonnegative solutions for long-wave unstable thin film equations $h_t = -a_0(h^n h_{xxx})_x - a_1(h^m h_x)_x$ with $n>0$, $a_0 > 0$, and $ a_1 >0$. The existence and finite speed of propagation results extend those of [Comm Pure Appl Math 51:625--661, 1998]. For $0<n<2$ we prove the existence of a nonnegative, compactly--supported, strong solution on the line that blows up in finite time. The construction requires that the initial data be nonnegative, compactly supported in $R^1$, be in $H^1(R^1)$, and have negative energy. The blow-up is proven for a large range of $(n,m)$ exponents and extends the results of [Indiana Univ Math J 49:1323--1366, 2000].
This paper is an addendum to earlier papers cite{R1,R2} in which it was shown that the unstable separatrix solutions for Painleve I and II are determined by $PT$-symmetric Hamiltonians. In this paper unstable separatrix solutions of the fourth Painle ve transcendent are studied numerically and analytically. For a fixed initial value, say $y(0)=1$, a discrete set of initial slopes $y(0)=b_n$ give rise to separatrix solutions. Similarly, for a fixed initial slope, say $y(0)=0$, a discrete set of initial values $y(0)=c_n$ give rise to separatrix solutions. For Painleve IV the large-$n$ asymptotic behavior of $b_n$ is $b_nsim B_{rm IV}n^{3/4}$ and that of $c_n$ is $c_nsim C_{rm IV} n^{1/2}$. The constants $B_{rm IV}$ and $C_{rm IV}$ are determined both numerically and analytically. The analytical values of these constants are found by reducing the nonlinear Painleve IV equation to the linear eigenvalue equation for the sextic $PT$-symmetric Hamiltonian $H=frac{1}{2} p^2+frac{1}{8} x^6$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا