ﻻ يوجد ملخص باللغة العربية
We study non-perturbative aspects of QCD Kondo effect, which has been recently proposed for the finite density and strong magnetic field systems, using conformal field theory describing the low energy physics near the IR fixed point. We clarify the symmetry class of QCD Kondo effect both for the finite density and magnetic field systems, and show how the IR fixed point is non-perturbatively characterized by the boundary condition, which incorporates the impurity effect in Kondo problem. We also obtain the low temperature behavior of several quantities of QCD Kondo effect in the vicinity of the IR fixed point based on the conformal field theory analysis.
The QCD Kondo effect stems from the color exchange interaction in QCD with non-Abelian property, and can be realized in a high-density quark matter containing heavy-quark impurities. We propose a novel type of the QCD Kondo effect induced by a strong
We develop a conformal-field theory approach for investigation of the quantum charge-, heat- and thermoelectric- transport through a quantum impurity fine tuned to a non-Fermi liquid regime. The non-Fermi-liquid operational mode is associated with th
We show that the dynamics resulting from preparing a one-dimensional quantum system in the ground state of two decoupled parts, then joined together and left to evolve unitarily with a translational invariant Hamiltonian (a local quench), can be desc
The low energy excitation spectrum of the critical Wilson surface is discussed between the roughening transition and the continuum limit of lattice QCD. The fine structure of the spectrum is interpreted within the framework of two-dimensional conformal field theory.
Classification of the non-equilibrium quantum many-body dynamics is a challenging problem in condensed matter physics and statistical mechanics. In this work, we study the basic question that whether a (1+1) dimensional conformal field theory (CFT) i