ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetically induced QCD Kondo effect

50   0   0.0 ( 0 )
 نشر من قبل Sho Ozaki
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The QCD Kondo effect stems from the color exchange interaction in QCD with non-Abelian property, and can be realized in a high-density quark matter containing heavy-quark impurities. We propose a novel type of the QCD Kondo effect induced by a strong magnetic field. In addition to the fact that the magnetic field does not affect the color degrees of freedom, two properties caused by the Landau quantization in a strong magnetic field are essential for the magnetically induced QCD Kondo effect; (1) dimensional reduction to 1+1-dimensions, and (2) finiteness of the density of states for lowest energy quarks. We demonstrate that, in a strong magnetic field $B$, the scattering amplitude of a massless quark off a heavy quark impurity indeed shows a characteristic behavior of the Kondo effect. The resulting Kondo scale is estimated as $Lambda_{rm K} simeq sqrt{e_qB} alpha_{s}^{1/3} {rm{exp}}{-{4}pi/N_{c} alpha_{s} {rm{log}}( 4 pi/alpha_{s}) }$ where $alpha_{s}$ and $N_c$ are the fine structure constant of strong interaction and the number of colors in QCD, and $e_q$ is the electric charge of light quarks.



قيم البحث

اقرأ أيضاً

37 - Taro Kimura , Sho Ozaki 2018
We study non-perturbative aspects of QCD Kondo effect, which has been recently proposed for the finite density and strong magnetic field systems, using conformal field theory describing the low energy physics near the IR fixed point. We clarify the s ymmetry class of QCD Kondo effect both for the finite density and magnetic field systems, and show how the IR fixed point is non-perturbatively characterized by the boundary condition, which incorporates the impurity effect in Kondo problem. We also obtain the low temperature behavior of several quantities of QCD Kondo effect in the vicinity of the IR fixed point based on the conformal field theory analysis.
This is a popular review of some recent investigations of the Kondo effect in a variety of mesoscopic systems. After a brief introduction, experiments are described where a scanning tunneling microscope measures the surroundings of a magnetic impurit y on a metal surface. In another set of experiments, Kondo effect creates a number of characteristic features in the electron transport through small electronic devices -- semiconductor quantum dots or single-molecule transistors which can be tuned by applying appropriate gate voltages. The article contains 5 color figures, photo of Jun Kondo, but no equations.
57 - I. V. Iorsh , O. V. Kibis 2021
It is shown theoretically that circularly polarized irradiation of two-dimensional electron gas can induce the localized electron states which antiferromagnetically interact with conduction electrons, resulting in the Kondo effect. Conditions of expe rimental observation of the effect are discussed for modern nanostructures.
We study the phase diagram of two-flavor massless two-color QCD (QC$_2$D) under the presence of quark chemical potentials and imaginary isospin chemical potentials. At the special point of the imaginary isospin chemical potential, called the isospin Roberge--Weiss (RW) point, two-flavor QC$_2$D enjoys the $mathbb{Z}_2$ center symmetry that acts on both quark flavors and the Polyakov loop. We find a $mathbb{Z}_2$ t Hooft anomaly of this system, which involves the $mathbb{Z}_2$ center symmetry, the baryon-number symmetry, and the isospin chiral symmetry. Anomaly matching, therefore, constrains the possible phase diagram at any temperatures and quark chemical potentials at the isospin RW point, and we compare it with previous results obtained by chiral effective field theory and lattice simulations. We also point out an interesting similarity of two-flavor massless QC$_2$D with $(2+1)$d quantum anti-ferromagnetic systems.
269 - R. Zitko , J. Bonca , A. Ramsak 2006
Numerical analysis of the simplest odd-numbered system of coupled quantum dots reveals an interplay between magnetic ordering, charge fluctuations and the tendency of itinerant electrons in the leads to screen magnetic moments. The transition from lo cal-moment to molecular-orbital behavior is visible in the evolution of correlation functions as the inter-dot coupling is increased. Resulting novel Kondo phases are presented in a phase diagram which can be sampled by measuring the zero-bias conductance. We discuss the origin of the even-odd effects by comparing with the double quantum dot.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا