ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum thermoelectric and heat transport in the overscreened Kondo regime: Exact conformal field theory results

43   0   0.0 ( 0 )
 نشر من قبل Deepak Karki
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a conformal-field theory approach for investigation of the quantum charge-, heat- and thermoelectric- transport through a quantum impurity fine tuned to a non-Fermi liquid regime. The non-Fermi-liquid operational mode is associated with the overscreened spin Kondo effect and controlled by the number of orbital channels. The universal low-temperature scaling and critical exponents for Seebeck and Peltier coefficients are investigated for the multichannel geometry. We derive and analyze the universal dependence of the thermoelectric coefficients on the number of orbital channels. We discuss the universality of Lorenz ratio and power factor beyond the Fermi Liquid paradigm. Different methods of verifying our findings based on the recent experiments are proposed.



قيم البحث

اقرأ أيضاً

37 - Taro Kimura , Sho Ozaki 2018
We study non-perturbative aspects of QCD Kondo effect, which has been recently proposed for the finite density and strong magnetic field systems, using conformal field theory describing the low energy physics near the IR fixed point. We clarify the s ymmetry class of QCD Kondo effect both for the finite density and magnetic field systems, and show how the IR fixed point is non-perturbatively characterized by the boundary condition, which incorporates the impurity effect in Kondo problem. We also obtain the low temperature behavior of several quantities of QCD Kondo effect in the vicinity of the IR fixed point based on the conformal field theory analysis.
Quantum phase transitions are ubiquitous in many exotic behaviors of strongly-correlated materials. However the microscopic complexity impedes their quantitative understanding. Here, we observe thoroughly and comprehend the rich strongly-correlated p hysics in two profoundly dissimilar regimes of quantum criticality. With a circuit implementing a quantum simulator for the three-channel Kondo model, we reveal the universal scalings toward different low-temperature fixed points and along the multiple crossovers from quantum criticality. Notably, an unanticipated violation of the maximum conductance for ballistic free electrons is uncovered. The present charge pseudospin implementation of a Kondo impurity opens access to a broad variety of strongly-correlated phenomena.
Optical excitation provides a powerful tool to investigate non-equilibrium physics in quantum Hall systems. Moreover, the length scale associated with photo-excited charge carries lies between that of local probes and global transport measurements. H ere, we investigate non-equilibrium physics of optically-excited charge carriers in graphene through photocurrent measurements in the integer quantum Hall regime. We observe that the photocurrent oscillates as a function of Fermi level, revealing the Landau-level quantization, and that the photocurrent oscillations are different for Fermi levels near and distant from the Dirac point. Our observation qualitatively agrees with a model that assumes the photocurrent is dominated by chiral edge transport of non-equilibrium carriers. Our experimental results are consistent with electron and hole chiralities being the same when the Fermi level is distant from the Dirac point, and opposite when near the Dirac point.
We analyze the transport properties of a double quantum dot device in the side-coupled configuration. A small quantum dot (QD), having a single relevant electronic level, is coupled to source and drain electrodes. A larger QD, whose multilevel nature is considered, is tunnel-coupled to the small QD. A Fermi liquid analysis shows that the low temperature conductance of the device is determined by the total electronic occupation of the double QD. When the small dot is in the Kondo regime, an even number of electrons in the large dot leads to a conductance that reaches the unitary limit, while for an odd number of electrons a two stage Kondo effect is observed and the conductance is strongly suppressed. The Kondo temperature of the second stage Kondo effect is strongly affected by the multilevel structure of the large QD. For increasing level spacing, a crossover from a large Kondo temperature regime to a small Kondo temperature regime is obtained when the level spacing becomes of the order of the large Kondo temperature.
We investigate the time-dependent transport properties of single and double quantum-impurity systems based on the hierarchical equations of motion (HEOM) approach. In the Kondo regime, the dynamical current in both cases is found oscillating due to t he temporal coherence of electrons tunneling through the device, which shares the same mechanism as the single-level resonance without e-e interactions but shows some different characteristics. For single quantum-impurity systems, the temperature T plays an inhibitory action to the oscillations of dynamic current through its suppression to the Kondo effects. The amplitude of the current oscillations is attenuated by the e-e interaction $U$ in the Kondo regime. The frequency of the current oscillation is found almost independent of T and U. For parallel-coupling double quantum-impurity systems, the oscillation of the current shows similar behaviors to the single one, but with two-to-three times larger amplitudes. At the limit of small inter-impurity coupling the oscillation of the current exhibits enhanced characters while it is weakened at the other limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا