ﻻ يوجد ملخص باللغة العربية
We consider elements of finite order in the Riordan group $cal R$ over a field of characteristic $0$. Viewing $cal R$ as a semi-direct product of groups of formal power series, we solve, for all $n geq 2$, two foundational questions posed by L. Shapiro for the case $n = 2$ (`involutions): Given a formal power series $F(x)$ of finite compositional order and an integer $ngeq 2$, Theorem 1 states, exactly which $g(x)$ make $big(g(x), F(x)big)$ a Riordan element of order $n$. Theorem 2 classifies finite-order Riordan group elements up to conjugation in $cal R$. Viewing $cal R$ as a group of infinite lower triangular matrices, we interpret Theorem 1 in terms of existence of eigenvectors and Theorem 2 as a normal form for finite order Riordan arrays under similarity. These lead to Theorem 3, a formula for all eigenvectors of finite order Riordan arrays; and we show how this can lead to interesting combinatorial identities. We then relate our work to papers of Cheon and Kim which motivated this paper and we solve the Open question which they posed. Finally, this circle of ideas gives a new proof of C. Marshalls theorem, which finds the unique $F(x)$, given bi-invertible $g(x)$, such that $big(g(x), F(x))$ is an involution.
Elements of the Riordan group $cal R$ over a field $mathbb F$ of characteristic zero are infinite lower triangular matrices which are defined in terms of pairs of formal power series. We wish to bring to the forefront, as a tool in the theory of Rior
The group of almost Riordan arrays contains the group of Riordan arrays as a subgroup. In this note, we exhibit examples of pseudo-involutions, involutions and quasi-involutions in the group of almost Riordan arrays.
The notion of a Riordan graph was introduced recently, and it is a far-reaching generalization of the well-known Pascal graphs and Toeplitz graphs. However, apart from a certain subclass of Toeplitz graphs, nothing was known on independent sets in Ri
Let $G$ be a finite cyclic group, written additively, and let $A, B$ be nonempty subsets of $G$. We will say that $G= A+B$ is a textit{factorization} if for each $g$ in $G$ there are unique elements $a, b$ of $G$ such that $g=a+b, ain A, bin B$. In