ﻻ يوجد ملخص باللغة العربية
Let $G$ be a finite cyclic group, written additively, and let $A, B$ be nonempty subsets of $G$. We will say that $G= A+B$ is a textit{factorization} if for each $g$ in $G$ there are unique elements $a, b$ of $G$ such that $g=a+b, ain A, bin B$. In particular, if $A$ is a complete set of residues $modulo$ $|A|$, then we call the factorization a textit{coset factorization} of $G$. In this paper, we mainly study a factorization $G= A+B$, where $G$ is a finite cyclic group and $A=[0,n-k-1]cup{i_0,i_1,ldots i_{k-1}}$ with $|A|=n$ and $ngeq 2k+1$. We obtain the following conclusion: If $(i)$ $kleq 2$ or $(ii)$ The number of distinct prime divisors of $gcd(|A|,|B|)$ is at most $1$ or $(iii)$ $gcd(|A|,|B|)=pq$ with $gcd(pq,frac{|B|}{gcd(|A|,|B|)})=1$, then $A$ is a complete set of residues $modulo$ $n$.
We show that the set R(w_0) of reduced expressions for the longest element in the hyperoctahedral group exhibits the cyclic sieving phenomenon. More specifically, R(w_0) possesses a natural cyclic action given by moving the first letter of a word to
Let $G$ be a finite cyclic group. Every sequence $S$ of length $l$ over $G$ can be written in the form $S=(n_1g)cdotldotscdot(n_lg)$ where $gin G$ and $n_1, ldots, n_lin[1, ord(g)]$, and the index $ind(S)$ of $S$ is defined to be the minimum of $(n_1
Let $mathcal{S}$ be a finite cyclic semigroup written additively. An element $e$ of $mathcal{S}$ is said to be idempotent if $e+e=e$. A sequence $T$ over $mathcal{S}$ is called {sl idempotent-sum free} provided that no idempotent of $mathcal{S}$ can
Let $p > 155$ be a prime and let $G$ be a cyclic group of order $p$. Let $S$ be a minimal zero-sum sequence with elements over $G$, i.e., the sum of elements in $S$ is zero, but no proper nontrivial subsequence of $S$ has sum zero. We call $S$ is uns
Let $G$ be a finite cyclic group. Every sequence $S$ over $G$ can be written in the form $S=(n_1g)cdotldotscdot(n_lg)$ where $gin G$ and $n_1, ldots, n_lin[1, ord(g)]$, and the index $ind(S)$ of $S$ is defined to be the minimum of $(n_1+cdots+n_l)/or