ﻻ يوجد ملخص باللغة العربية
Elements of the Riordan group $cal R$ over a field $mathbb F$ of characteristic zero are infinite lower triangular matrices which are defined in terms of pairs of formal power series. We wish to bring to the forefront, as a tool in the theory of Riordan groups, the use of multiplicative roots $a(x)^frac{1}{n}$ of elements $a(x)$ in the ring of formal power series over $mathbb F$ . Using roots, we give a Normal Form for non-constant formal power series, we prove a surprising simple Composition-Cancellation Theorem and apply this to show that, for a major class of Riordan elements (i.e., for non-constant $g(x)$ and appropriate $F(x)$), only one of the two basic conditions for checking that $big(g(x), , F(x)big)$ has order $n$ in the group $cal R$ actually needs to be checked. Using all this, our main result is to generalize C. Marshall [Congressus Numerantium, 229 (2017), 343-351] and prove: Given non-constant $g(x)$ satisfying necessary conditions, there exists a unique $F(x)$, given by an explicit formula, such that $big(g(x), , F(x)big)$ is an involution in $cal R$. Finally, as examples, we apply this theorem to ``aerated series $h(x) = g(x^q), q text{odd}$, to find the unique $K(x)$ such that $big(h(x), K(x)big)$ is an involution.
We consider elements of finite order in the Riordan group $cal R$ over a field of characteristic $0$. Viewing $cal R$ as a semi-direct product of groups of formal power series, we solve, for all $n geq 2$, two foundational questions posed by L. Shapi
Fixing a positive integer $r$ and $0 le k le r-1$, define $f^{langle r,k rangle}$ for every formal power series $f$ as $ f(x) = f^{langle r,0 rangle}(x^r)+xf^{langle r,1 rangle}(x^r)+ cdots +x^{r-1}f^{langle r,r-1 rangle}(x^r).$ Jochemko recently sho
The group of almost Riordan arrays contains the group of Riordan arrays as a subgroup. In this note, we exhibit examples of pseudo-involutions, involutions and quasi-involutions in the group of almost Riordan arrays.
We continue the first and second authors study of $q$-commutative power series rings $R=k_q[[x_1,ldots,x_n]]$ and Laurent series rings $L=k_q[[x^{pm 1}_1,ldots,x^{pm 1}_n]]$, specializing to the case in which the commutation parameters $q_{ij}$ are a
Fields of generalised power series (or Hahn fields), with coefficients in a field and exponents in a divisible ordered abelian group, are a fundamental tool in the study of valued and ordered fields and asymptotic expansions. The subring of the serie