ﻻ يوجد ملخص باللغة العربية
Using first principles structure searching with density-functional theory (DFT) we identify a novel $Fmbar{3}m$ phase of Cu$_2$P and two low-lying metastable structures, an $Ibar{4}3d$--Cu$_3$P phase, and a $Cm$--Cu$_3$P$_{11}$ phase. The computed pair distribution function of the novel $Cm$--Cu$_3$P$_{11}$ phase shows its structural similarity to the experimentally identified $Cm$--Cu$_2$P$_7$ phase. The relative stability of all Cu--P phases at finite temperatures is determined by calculating the Gibbs free energy using vibrational effects from phonon modes at 0 K. From this, a finite-temperature convex hull is created, on which $Fmbar{3}m$--Cu$_2$P is dynamically stable and the Cu$_{3-x}$P ($x < 1$) defect phase $Cmc2_1$--Cu$_8$P$_3$ remains metastable (within 20 meV/atom of the convex hull) across a temperature range from 0 K to 600 K. Both CuP$_2$ and Cu$_3$P exhibit theoretical gravimetric capacities higher than contemporary graphite anodes for Li-ion batteries; the predicted Cu$_2$P phase has a theoretical gravimetric capacity of 508 mAh/g as a Li-ion battery electrode, greater than both Cu$_3$P (363 mAh/g) and graphite (372 mAh/g). Cu$_2$P is also predicted to be both non-magnetic and metallic, which should promote efficient electron transfer in the anode. Cu$_2$Ps favorable properties as a metallic, high-capacity material suggest its use as a future conversion anode for Li-ion batteries; with a volume expansion of 99% during complete cycling, Cu$_2$P anodes could be more durable than other conversion anodes in the Cu--P system with volume expansions greater than 150%.
For a successful integration of silicon in high-capacity anodes of Li-ion batteries, its intrinsic capacity decay on cycling due to severe volume swelling should be minimized. In this work, Ni-Sn intermetallics are studied as buffering matrix during
A thick electrode with high areal capacity has been developed as a strategy for high-energy-density lithium-ion batteries, but thick electrodes have difficulties in manufacturing and limitations in ion transport. Here, we reported a new manufacturing
Lithium metal cells are key towards achieving high specific energy and energy density for electrification of transportation and aviation. Anode-free cells are the limiting case of lithium metal cells involving no excess lithium and the highest possib
Conversion reaction is one of the most important chemical processes in energy storage such as lithium ion batteries. While it is generally assumed that the conversion reaction is initiated by ion intercalation into the electrode material, solid evide
Crystal structures play a vital role in determining materials properties. In Li-ion cathodes, the crystal structure defines the dimensionality and connectivity of interstitial sites, thus determining Li-ion diffusion kinetics. While a perfect crystal