ﻻ يوجد ملخص باللغة العربية
In this paper, we use a unified framework to study Poisson stable (including stationary, periodic, quasi-periodic, almost periodic, almost automorphic, Birkhoff recurrent, almost recurrent in the sense of Bebutov, Levitan almost periodic, pseudo-periodic, pseudo-recurrent and Poisson stable) solutions for semilinear stochastic differential equations driven by infinite dimensional Levy noise with large jumps. Under suitable conditions on drift, diffusion and jump coefficients, we prove that there exist solutions which inherit the Poisson stability of coefficients. Further we show that these solutions are globally asymptotically stable in square-mean sense. Finally, we illustrate our theoretical results by several examples.
In this paper, we discuss the relationships between stability and almost periodicity for solutions of stochastic differential equations. Our essential idea is to get stability of solutions or systems by some inherited properties of Lyapunov functions
The paper is dedicated to studying the problem of Poisson stability (in particular stationarity, periodicity, quasi-periodicity, Bohr almost periodicity, Bohr almost automorphy, Birkhoff recurrence, almost recurrence in the sense of Bebutov, Levitan
The concept of square-mean almost automorphy for stochastic processes is introduced. The existence and uniqueness of square-mean almost automorphic solutions to some linear and non-linear stochastic differential equations are established provided the
In this paper, we study almost periodic solutions for semilinear stochastic differential equations driven by L{e}vy noise with exponential dichotomy property. Under suitable conditions on the coefficients, we obtain the existence and uniqueness of bo
In contrast to existing works on stochastic averaging on finite intervals, we establish an averaging principle on the whole real axis, i.e. the so-called second Bogolyubov theorem, for semilinear stochastic ordinary differential equations in Hilbert