ﻻ يوجد ملخص باللغة العربية
We present a novel scheme allowing for 2D target localization using highly quantized 1-bit measurements from a Frequency Modulated Continuous Wave (FMCW) radar with two receiving antennas. Quantization of radar signals introduces localization artifacts, we remove this limitation by inserting a dithering on the unquantized observations. We then adapt the projected back projection algorithm to estimate both the range and angle of targets from the dithered quantized radar observations, with provably decaying reconstruction error when the number of observations increases. Simulations are performed to highlight the accuracy of the dithered scheme in noiseless conditions when compared to the non-dithered and full 32-bit resolution under severe bit-rate reduction. Finally, measurements are performed using a radar sensor to demonstrate the effectiveness and performances of the proposed quantized dithered scheme in real conditions.
In this paper, we further expand on the work in [1] that focused on the localization of targets in a 2D space using 1-bit dithered measurements coming from a 2 receiving antennae radar. Our aim is to further reduce the hardware requirements and bit-r
In a frequency division duplex (FDD) massive multiple input multiple output (MIMO) system, the channel state information (CSI) feedback causes a significant bandwidth resource occupation. In order to save the uplink bandwidth resources, a 1-bit compr
FAR has improved anti-jamming performance over traditional pulse-Doppler radars under complex electromagnetic circumstances. To reconstruct the range-Doppler information in FAR, many compressed sensing (CS) methods including standard and block sparse
We consider the problem of sparse signal reconstruction from noisy one-bit compressed measurements when the receiver has access to side-information (SI). We assume that compressed measurements are corrupted by additive white Gaussian noise before qua
The 1-bit compressed sensing framework enables the recovery of a sparse vector x from the sign information of each entry of its linear transformation. Discarding the amplitude information can significantly reduce the amount of data, which is highly b