ﻻ يوجد ملخص باللغة العربية
The 1-bit compressed sensing framework enables the recovery of a sparse vector x from the sign information of each entry of its linear transformation. Discarding the amplitude information can significantly reduce the amount of data, which is highly beneficial in practical applications. In this paper, we present a Bayesian approach to signal reconstruction for 1-bit compressed sensing, and analyze its typical performance using statistical mechanics. Utilizing the replica method, we show that the Bayesian approach enables better reconstruction than the L1-norm minimization approach, asymptotically saturating the performance obtained when the non-zero entries positions of the signal are known. We also test a message passing algorithm for signal reconstruction on the basis of belief propagation. The results of numerical experiments are consistent with those of the theoretical analysis.
This work focuses on the reconstruction of sparse signals from their 1-bit measurements. The context is the one of 1-bit compressive sensing where the measurements amount to quantizing (dithered) random projections. Our main contribution shows that,
Is it possible to obliviously construct a set of hyperplanes H such that you can approximate a unit vector x when you are given the side on which the vector lies with respect to every h in H? In the sparse recovery literature, where x is approximatel
We introduce a recursive algorithm for performing compressed sensing on streaming data. The approach consists of a) recursive encoding, where we sample the input stream via overlapping windowing and make use of the previous measurement in obtaining t
In the problem of adaptive compressed sensing, one wants to estimate an approximately $k$-sparse vector $xinmathbb{R}^n$ from $m$ linear measurements $A_1 x, A_2 x,ldots, A_m x$, where $A_i$ can be chosen based on the outcomes $A_1 x,ldots, A_{i-1} x
Signal processing techniques have been developed that use different strategies to bypass the Nyquist sampling theorem in order to recover more information than a traditional discrete Fourier transform. Here we examine three such methods: filter diago