ترغب بنشر مسار تعليمي؟ اضغط هنا

Controlling spectral energies of all harmonics in programmable way using time-domain digital coding metasurface

78   0   0.0 ( 0 )
 نشر من قبل Xi Yang
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Modern wireless communication is one of the most important information technologies, but its system architecture has been unchanged for many years. Here, we propose a much simpler architecture for wireless communication systems based on metasurface. We firstly propose a time-domain digital coding metasurface to reach a simple but efficient method to manipulate spectral distributions of harmonics. Under dynamic modulations of phases on surface reflectivity, we could achieve accurate controls to different harmonics in a programmable way to reach many unusual functions like frequency cloaking and velocity illusion, owing to the temporal gradient introduced by digital signals encoded by 0 and 1 sequences. A theoretical model is presented and experimentally validated to reveal the nonlinear process. Based on the time-domain digital coding metasurface, we propose and realize a new wireless communication system in binary frequency-shift keying (BFSK) frame, which has much more simplified architecture than the traditional BFSK with excellent performance for real-time message transmission. The presented work, from new concept to new system, will find important applications in modern information technologies.

قيم البحث

اقرأ أيضاً

Space-time modulated metasurfaces have attracted significant attention due to the additional degree of freedom in manipulating the electromagnetic (EM) waves in both space and time domains. However, the existing techniques have limited wave control c apabilities, leading to just a few feasible schemes like regulation of only one specific harmonic. Here, we propose to realize independent manipulations of arbitrarily dual harmonics and their wave behaviors using a space-time-coding (STC) digital metasurface. By employing different STC sequences to the reflection phase of the metasurface, independent phase-pattern configurations of two desired harmonics can be achieved simultaneously, which further leads to independent beam shaping at the two harmonic frequencies. An analytical theory is developed to offer the physical insights in the arbitrary dual-harmonic manipulations of spectra and spatial beams, which is verified by experiments with good agreements. The presented STC strategy provides a new way to design multifunctional programmable systems, which will find potential applications such as cognitive radar and multi-user wireless communications.
Many emerging technologies, such as ultra-massive multiple-input multiple-output (UM-MIMO), terahertz (THz) communications are under active discussion as promising technologies to support the extremely high access rate and superior network capacity i n the future sixth-generation (6G) mobile communication systems. However, such technologies are still facing many challenges for practical implementation. In particular, UM-MIMO and THz communication require extremely large number of radio frequency (RF) chains, and hence suffering from prohibitive hardware cost and complexity. In this article, we introduce a new paradigm to address the above issues, namely wireless communication enabled by programmable metasurfaces, by exploiting the powerful capability of metasurfaces in manipulating electromagnetic waves. We will first introduce the basic concept of programmable metasurfaces, followed by the promising paradigm shift in future wireless communication systems enabled by programmable metasurfaces. In particular, we propose two prospective paradigms of applying programmable metasurfaces in wireless transceivers: namely RF chain-free transmitter and space-down-conversion receiver, which both have great potential to simplify the architecture and reduce the hardware cost of future wireless transceivers. Furthermore, we present the design architectures, preliminary experimental results and main advantages of these new paradigms and discuss their potential opportunities and challenges toward ultra-massive 6G communications with low hardware complexity, low cost, and high energy efficiency.
We present the first experimental demonstration of learned time-domain digital back-propagation (DBP), in 64-GBd dual-polarization 64-QAM signal transmission over 1014 km. Performance gains were comparable to those obtained with conventional, higher complexity, frequency-domain DBP.
The growing demand for high-speed data, quality of service (QoS) assurance and energy efficiency has triggered the evolution of 4G LTE-A networks to 5G and beyond. Interference is still a major performance bottleneck. This paper studies the applicati on of physical-layer network coding (PNC), a technique that exploits interference, in heterogeneous cellular networks. In particular, we propose a rate-maximising relay selection algorithm for a single cell with multiple relays based on the decode-and-forward strategy. With nodes transmitting at different powers, the proposed algorithm adapts the resource allocation according to the differing link rates and we prove theoretically that the optimisation problem is log-concave. The proposed technique is shown to perform significantly better than the widely studied selection-cooperation technique. We then undertake an experimental study on a software radio platform of the decoding performance of PNC with unbalanced SNRs in the multiple-access transmissions. This problem is inherent in cellular networks and it is shown that with channel coding and decoders based on multiuser detection and successive interference cancellation, the performance is better with power imbalance. This paper paves the way for further research in multi-cell PNC, resource allocation, and the implementation of PNC with higher-order modulations and advanced coding techniques.
This paper considers a multi-antenna multicast system with programmable metasurface (PMS) based transmitter. Taking into account of the finite-resolution phase shifts of PMSs, a novel beam training approach is proposed, which achieves comparable perf ormance as the exhaustive beam searching method but with much lower time overhead. Then, a closed-form expression for the achievable multicast rate is presented, which is valid for arbitrary system configurations. In addition, for certain asymptotic scenario, simple approximated expressions for the multicase rate are derived. Closed-form solutions are obtained for the optimal power allocation scheme, and it is shown that equal power allocation is optimal when the pilot power or the number of reflecting elements is sufficiently large. However, it is desirable to allocate more power to weaker users when there are a large number of RF chains. The analytical findings indicate that, with large pilot power, the multicast rate is determined by the weakest user. Also, increasing the number of radio frequency (RF) chains or reflecting elements can significantly improve the multicast rate, and as the phase shift number becomes larger, the multicast rate improves first and gradually converges to a limit. Moreover, increasing the number of users would significantly degrade the multicast rate, but this rate loss can be compensated by implementing a large number of reflecting elements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا