ﻻ يوجد ملخص باللغة العربية
This paper considers a multi-antenna multicast system with programmable metasurface (PMS) based transmitter. Taking into account of the finite-resolution phase shifts of PMSs, a novel beam training approach is proposed, which achieves comparable performance as the exhaustive beam searching method but with much lower time overhead. Then, a closed-form expression for the achievable multicast rate is presented, which is valid for arbitrary system configurations. In addition, for certain asymptotic scenario, simple approximated expressions for the multicase rate are derived. Closed-form solutions are obtained for the optimal power allocation scheme, and it is shown that equal power allocation is optimal when the pilot power or the number of reflecting elements is sufficiently large. However, it is desirable to allocate more power to weaker users when there are a large number of RF chains. The analytical findings indicate that, with large pilot power, the multicast rate is determined by the weakest user. Also, increasing the number of radio frequency (RF) chains or reflecting elements can significantly improve the multicast rate, and as the phase shift number becomes larger, the multicast rate improves first and gradually converges to a limit. Moreover, increasing the number of users would significantly degrade the multicast rate, but this rate loss can be compensated by implementing a large number of reflecting elements.
In this paper, we investigate the energy-efficient hybrid precoding design for integrated multicast-unicast millimeter wave (mmWave) system, where the simultaneous wireless information and power transform is considered at receivers. We adopt two spar
The recently emerged symbol-level precoding (SLP) technique has been regarded as a promising solution in multi-user wireless communication systems, since it can convert harmful multi-user interference (MUI) into beneficial signals for enhancing syste
The performance of short polar codes under successive cancellation (SC) and SC list (SCL) decoding is analyzed for the case where the decoder messages are coarsely quantized. This setting is of particular interest for applications requiring low-compl
In this paper, we study a class of spatially coupled turbo codes, namely partially information- and partially parity-coupled turbo codes. This class of codes enjoy several advantages such as flexible code rate adjustment by varying the coupling ratio
Recent considerations for reconfigurable intelligent surfaces (RISs) assume that RISs can convey information by reflection without the need of transmit radio frequency chains, which, however, is a challenging task. In this paper, we propose an RIS-en