ترغب بنشر مسار تعليمي؟ اضغط هنا

Wireless Communications with Programmable Metasurface: New Paradigms, Opportunities, and Challenges on Transceiver Design

102   0   0.0 ( 0 )
 نشر من قبل Wankai Tang
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Many emerging technologies, such as ultra-massive multiple-input multiple-output (UM-MIMO), terahertz (THz) communications are under active discussion as promising technologies to support the extremely high access rate and superior network capacity in the future sixth-generation (6G) mobile communication systems. However, such technologies are still facing many challenges for practical implementation. In particular, UM-MIMO and THz communication require extremely large number of radio frequency (RF) chains, and hence suffering from prohibitive hardware cost and complexity. In this article, we introduce a new paradigm to address the above issues, namely wireless communication enabled by programmable metasurfaces, by exploiting the powerful capability of metasurfaces in manipulating electromagnetic waves. We will first introduce the basic concept of programmable metasurfaces, followed by the promising paradigm shift in future wireless communication systems enabled by programmable metasurfaces. In particular, we propose two prospective paradigms of applying programmable metasurfaces in wireless transceivers: namely RF chain-free transmitter and space-down-conversion receiver, which both have great potential to simplify the architecture and reduce the hardware cost of future wireless transceivers. Furthermore, we present the design architectures, preliminary experimental results and main advantages of these new paradigms and discuss their potential opportunities and challenges toward ultra-massive 6G communications with low hardware complexity, low cost, and high energy efficiency.

قيم البحث

اقرأ أيضاً

Metasurfaces have drawn significant attentions due to their superior capability in tailoring electromagnetic waves with a wide frequency range, from microwave to visible light. Recently, programmable metasurfaces have demonstrated the ability of mani pulating the amplitude or phase of electromagnetic waves in a programmable manner in real time, which renders them especially appealing in the applications of wireless communications. To practically demonstrate the feasibility of programmable metasurfaces in future communication systems, in this paper, we design and realize a novel metasurface-based wireless communication system. By exploiting the dynamically controllable property of programmable metasurface, we firstly introduce the fundamental principle of the metasurface-based wireless communication system design. We then present the design, implementation and experimental evaluation of the proposed metasurface-based wireless communication system with a prototype, which realizes single carrier quadrature phase shift keying (QPSK) transmission over the air. In the developed prototype, the phase of the reflected electromagnetic wave of programmable metasurface is directly manipulated in real time according to the baseband control signal, which achieves 2.048 Mbps data transfer rate with video streaming transmission over the air. Experimental result is provided to compare the performance of the proposed metasurface-based architecture against the conventional one. With the slight increase of the transmit power by 5 dB, the same bit error rate (BER) performance can be achieved as the conventional system in the absence of channel coding. Such a result is encouraging considering that the metasurface-based system has the advantages of low hardware cost and simple structure, thus leading to a promising new architecture for wireless communications.
Broadband access is key to ensuring robust economic development and improving quality of life. Unfortunately, the communication infrastructure deployed in rural areas throughout the world lags behind its urban counterparts due to low population densi ty and economics. This article examines the motivations and challenges of providing broadband access over vast rural regions, with an emphasis on the wireless aspect in view of its irreplaceable role in closing the digital gap. Applications and opportunities for future rural wireless communications are discussed for a variety of areas, including residential welfare, digital agriculture, and transportation. This article also comprehensively investigates current and emerging wireless technologies that could facilitate rural deployment. Although there is no simple solution, there is an urgent need for researchers to work on coverage, cost, and reliability of rural wireless access.
5G wireless communications technology is being launched, with many smart applications being integrated. However, 5G specifications merge the requirements of new emerging technologies forcefully. These include data rate, capacity, latency, reliability , resources sharing, and energy/bit. To meet these challenging demands, research is focusing on 6G wireless communications enabling different technologies and emerging new applications. In this report, the latest research work on 6G technologies and applications is summarized, and the associated research challenges are discussed.
Reconfigurable intelligent surfaces (RISs) have emerged as a cost- and energy-efficient technology that can customize and program the physical propagation environment by reflecting radio waves in preferred directions. However, the purely passive refl ection of RISs not only limits the end-to-end channel beamforming gains, but also hinders the acquisition of accurate channel state information for the phase control at RISs. In this paper, we provide an overview of a hybrid relay-reflecting intelligent surface (HR-RIS) architecture, in which only a few elements are active and connected to power amplifiers and radio frequency chains. The introduction of a small number of active elements enables a remarkable system performance improvement which can also compensate for losses due to hardware impairments such as the deployment of limited-resolution phase shifters. Particularly, the active processing facilitates efficient channel estimation and localization at HR-RISs. We present two practical architectures for HR-RISs, namely, fixed and dynamic HR-RISs, and discuss their applications to beamforming, channel estimation, and localization. The benefits, key challenges, and future research directions for HR-RIS-aided communications are also highlighted. Numerical results for an exemplary deployment scenario show that HR-RISs with only four active elements can attain up to 42.8 percent and 41.8 percent improvement in spectral efficiency and energy efficiency, respectively, compared with conventional RISs.
Next generation wireless base stations and access points will transmit and receive using extremely massive numbers of antennas. A promising technology for realizing such massive arrays in a dynamically controllable and scalable manner with reduced co st and power consumption utilizes surfaces of radiating metamaterial elements, known as metasurfaces. To date, metasurfaces are mainly considered in the context of wireless communications as passive reflecting devices, aiding conventional transceivers in shaping the propagation environment. This article presents an alternative application of metasurfaces for wireless communications as active reconfigurable antennas with advanced analog signal processing capabilities for next generation transceivers. We review the main characteristics of metasurfaces used for radiation and reception, and analyze their main advantages as well as their effect on the ability to reliably communicate in wireless networks. As current studies unveil only a portion of the potential of metasurfaces, we detail a list of exciting research and implementation challenges which arise from the application of metasurface antennas for wireless transceivers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا