ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Variational Reinforcement Learning for POMDPs

237   0   0.0 ( 0 )
 نشر من قبل Maximilian Igl
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Many real-world sequential decision making problems are partially observable by nature, and the environment model is typically unknown. Consequently, there is great need for reinforcement learning methods that can tackle such problems given only a stream of incomplete and noisy observations. In this paper, we propose deep variational reinforcement learning (DVRL), which introduces an inductive bias that allows an agent to learn a generative model of the environment and perform inference in that model to effectively aggregate the available information. We develop an n-step approximation to the evidence lower bound (ELBO), allowing the model to be trained jointly with the policy. This ensures that the latent state representation is suitable for the control task. In experiments on Mountain Hike and flickering Atari we show that our method outperforms previous approaches relying on recurrent neural networks to encode the past.

قيم البحث

اقرأ أيضاً

126 - Xiao Ma , Siwei Chen , David Hsu 2020
Deep reinforcement learning (DRL) has achieved significant success in various robot tasks: manipulation, navigation, etc. However, complex visual observations in natural environments remains a major challenge. This paper presents Contrastive Variatio nal Reinforcement Learning (CVRL), a model-based method that tackles complex visual observations in DRL. CVRL learns a contrastive variational model by maximizing the mutual information between latent states and observations discriminatively, through contrastive learning. It avoids modeling the complex observation space unnecessarily, as the commonly used generative observation model often does, and is significantly more robust. CVRL achieves comparable performance with state-of-the-art model-based DRL methods on standard Mujoco tasks. It significantly outperforms them on Natural Mujoco tasks and a robot box-pushing task with complex observations, e.g., dynamic shadows. The CVRL code is available publicly at https://github.com/Yusufma03/CVRL.
The state-of-the-art machine learning approaches are based on classical von Neumann computing architectures and have been widely used in many industrial and academic domains. With the recent development of quantum computing, researchers and tech-gian ts have attempted new quantum circuits for machine learning tasks. However, the existing quantum computing platforms are hard to simulate classical deep learning models or problems because of the intractability of deep quantum circuits. Thus, it is necessary to design feasible quantum algorithms for quantum machine learning for noisy intermediate scale quantum (NISQ) devices. This work explores variational quantum circuits for deep reinforcement learning. Specifically, we reshape classical deep reinforcement learning algorithms like experience replay and target network into a representation of variational quantum circuits. Moreover, we use a quantum information encoding scheme to reduce the number of model parameters compared to classical neural networks. To the best of our knowledge, this work is the first proof-of-principle demonstration of variational quantum circuits to approximate the deep $Q$-value function for decision-making and policy-selection reinforcement learning with experience replay and target network. Besides, our variational quantum circuits can be deployed in many near-term NISQ machines.
Applying probabilistic models to reinforcement learning (RL) enables the application of powerful optimisation tools such as variational inference to RL. However, existing inference frameworks and their algorithms pose significant challenges for learn ing optimal policies, e.g., the absence of mode capturing behaviour in pseudo-likelihood methods and difficulties learning deterministic policies in maximum entropy RL based approaches. We propose VIREL, a novel, theoretically grounded probabilistic inference framework for RL that utilises a parametrised action-value function to summarise future dynamics of the underlying MDP. This gives VIREL a mode-seeking form of KL divergence, the ability to learn deterministic optimal polices naturally from inference and the ability to optimise value functions and policies in separate, iterative steps. In applying variational expectation-maximisation to VIREL we thus show that the actor-critic algorithm can be reduced to expectation-maximisation, with policy improvement equivalent to an E-step and policy evaluation to an M-step. We then derive a family of actor-critic methods from VIREL, including a scheme for adaptive exploration. Finally, we demonstrate that actor-critic algorithms from this family outperform state-of-the-art methods based on soft value functions in several domains.
Off-policy learning allows us to learn about possible policies of behavior from experience generated by a different behavior policy. Temporal difference (TD) learning algorithms can become unstable when combined with function approximation and off-po licy sampling - this is known as the deadly triad. Emphatic temporal difference (ETD($lambda$)) algorithm ensures convergence in the linear case by appropriately weighting the TD($lambda$) updates. In this paper, we extend the use of emphatic methods to deep reinforcement learning agents. We show that naively adapting ETD($lambda$) to popular deep reinforcement learning algorithms, which use forward view multi-step returns, results in poor performance. We then derive new emphatic algorithms for use in the context of such algorithms, and we demonstrate that they provide noticeable benefits in small problems designed to highlight the instability of TD methods. Finally, we observed improved performance when applying these algorithms at scale on classic Atari games from the Arcade Learning Environment.
Policies for partially observed Markov decision processes can be efficiently learned by imitating policies for the corresponding fully observed Markov decision processes. Unfortunately, existing approaches for this kind of imitation learning have a s erious flaw: the expert does not know what the trainee cannot see, and so may encourage actions that are sub-optimal, even unsafe, under partial information. We derive an objective to instead train the expert to maximize the expected reward of the imitating agent policy, and use it to construct an efficient algorithm, adaptive asymmetric DAgger (A2D), that jointly trains the expert and the agent. We show that A2D produces an expert policy that the agent can safely imitate, in turn outperforming policies learned by imitating a fixed expert.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا