ترغب بنشر مسار تعليمي؟ اضغط هنا

VIREL: A Variational Inference Framework for Reinforcement Learning

248   0   0.0 ( 0 )
 نشر من قبل Matthew Fellows
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Applying probabilistic models to reinforcement learning (RL) enables the application of powerful optimisation tools such as variational inference to RL. However, existing inference frameworks and their algorithms pose significant challenges for learning optimal policies, e.g., the absence of mode capturing behaviour in pseudo-likelihood methods and difficulties learning deterministic policies in maximum entropy RL based approaches. We propose VIREL, a novel, theoretically grounded probabilistic inference framework for RL that utilises a parametrised action-value function to summarise future dynamics of the underlying MDP. This gives VIREL a mode-seeking form of KL divergence, the ability to learn deterministic optimal polices naturally from inference and the ability to optimise value functions and policies in separate, iterative steps. In applying variational expectation-maximisation to VIREL we thus show that the actor-critic algorithm can be reduced to expectation-maximisation, with policy improvement equivalent to an E-step and policy evaluation to an M-step. We then derive a family of actor-critic methods from VIREL, including a scheme for adaptive exploration. Finally, we demonstrate that actor-critic algorithms from this family outperform state-of-the-art methods based on soft value functions in several domains.

قيم البحث

اقرأ أيضاً

Many real-world sequential decision making problems are partially observable by nature, and the environment model is typically unknown. Consequently, there is great need for reinforcement learning methods that can tackle such problems given only a st ream of incomplete and noisy observations. In this paper, we propose deep variational reinforcement learning (DVRL), which introduces an inductive bias that allows an agent to learn a generative model of the environment and perform inference in that model to effectively aggregate the available information. We develop an n-step approximation to the evidence lower bound (ELBO), allowing the model to be trained jointly with the policy. This ensures that the latent state representation is suitable for the control task. In experiments on Mountain Hike and flickering Atari we show that our method outperforms previous approaches relying on recurrent neural networks to encode the past.
126 - Xiao Ma , Siwei Chen , David Hsu 2020
Deep reinforcement learning (DRL) has achieved significant success in various robot tasks: manipulation, navigation, etc. However, complex visual observations in natural environments remains a major challenge. This paper presents Contrastive Variatio nal Reinforcement Learning (CVRL), a model-based method that tackles complex visual observations in DRL. CVRL learns a contrastive variational model by maximizing the mutual information between latent states and observations discriminatively, through contrastive learning. It avoids modeling the complex observation space unnecessarily, as the commonly used generative observation model often does, and is significantly more robust. CVRL achieves comparable performance with state-of-the-art model-based DRL methods on standard Mujoco tasks. It significantly outperforms them on Natural Mujoco tasks and a robot box-pushing task with complex observations, e.g., dynamic shadows. The CVRL code is available publicly at https://github.com/Yusufma03/CVRL.
While reinforcement learning algorithms provide automated acquisition of optimal policies, practical application of such methods requires a number of design decisions, such as manually designing reward functions that not only define the task, but als o provide sufficient shaping to accomplish it. In this paper, we discuss a new perspective on reinforcement learning, recasting it as the problem of inferring actions that achieve desired outcomes, rather than a problem of maximizing rewards. To solve the resulting outcome-directed inference problem, we establish a novel variational inference formulation that allows us to derive a well-shaped reward function which can be learned directly from environment interactions. From the corresponding variational objective, we also derive a new probabilistic Bellman backup operator reminiscent of the standard Bellman backup operator and use it to develop an off-policy algorithm to solve goal-directed tasks. We empirically demonstrate that this method eliminates the need to design reward functions and leads to effective goal-directed behaviors.
Bayesian reinforcement learning (BRL) offers a decision-theoretic solution for reinforcement learning. While model-based BRL algorithms have focused either on maintaining a posterior distribution on models or value functions and combining this with a pproximate dynamic programming or tree search, previous Bayesian model-free value function distribution approaches implicitly make strong assumptions or approximations. We describe a novel Bayesian framework, Inferential Induction, for correctly inferring value function distributions from data, which leads to the development of a new class of BRL algorithms. We design an algorithm, Bayesian Backwards Induction, with this framework. We experimentally demonstrate that the proposed algorithm is competitive with respect to the state of the art.
This paper presents studies on a deterministic annealing algorithm based on quantum annealing for variational Bayes (QAVB) inference, which can be seen as an extension of the simulated annealing for variational Bayes (SAVB) inference. QAVB is as easy as SAVB to implement. Experiments revealed QAVB finds a better local optimum than SAVB in terms of the variational free energy in latent Dirichlet allocation (LDA).

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا