ﻻ يوجد ملخص باللغة العربية
At finite concentrations of reacting molecules, kinetics of diffusion-controlled reactions is affected by intra-reactant interactions. As a result, multi-particle reaction statistics cannot be deduced from single-particle results. Here we briefly review a recent progress in overcoming this fundamental difficulty. We show that the fluctuating hydrodynamics and macroscopic fluctuation theory provide a simple, general and versatile framework for studying a whole class of problems of survival, absorption and escape of interacting diffusing particles.
The narrow escape problem deals with the calculation of the mean escape time (MET) of a Brownian particle from a bounded domain through a small hole on the domains boundary. Here we develop a formalism that allows us to evaluate the emph{non-escape p
Suppose that a $d$-dimensional domain is filled with a gas of (in general, interacting) diffusive particles with density $n_0$. A particle is absorbed whenever it reaches the domain boundary. Employing macroscopic fluctuation theory, we evaluate the
We study fluctuations of particle absorption by a three-dimensional domain with multiple absorbing patches. The domain is in contact with a gas of interacting diffusing particles. This problem is motivated by living cell sensing via multiple receptor
The time which a diffusing particle spends in a certain region of space is known as the occupation time, or the residence time. Recently the joint occupation time statistics of an ensemble of non-interacting particles was addressed using the single-p
We investigate how confinement may drastically change both the probability density of the first-encounter time and the related survival probability in the case of two diffusing particles. To obtain analytical insights into this problem, we focus on t