ﻻ يوجد ملخص باللغة العربية
Suppose that a $d$-dimensional domain is filled with a gas of (in general, interacting) diffusive particles with density $n_0$. A particle is absorbed whenever it reaches the domain boundary. Employing macroscopic fluctuation theory, we evaluate the probability ${mathcal P}$ that no particles are absorbed during a long time $T$. We argue that the most likely gas density profile, conditional on this event, is stationary throughout most of the time $T$. As a result, ${mathcal P}$ decays exponentially with $T$ for a whole class of interacting diffusive gases in any dimension. For $d=1$ the stationary gas density profile and ${mathcal P}$ can be found analytically. In higher dimensions we focus on the simple symmetric exclusion process (SSEP) and show that $-ln {mathcal P}simeq D_0TL^{d-2} ,s(n_0)$, where $D_0$ is the gas diffusivity, and $L$ is the linear size of the system. We calculate the rescaled action $s(n_0)$ for $d=1$, for rectangular domains in $d=2$, and for spherical domains. Near close packing of the SSEP $s(n_0)$ can be found analytically for domains of any shape and in any dimension.
At finite concentrations of reacting molecules, kinetics of diffusion-controlled reactions is affected by intra-reactant interactions. As a result, multi-particle reaction statistics cannot be deduced from single-particle results. Here we briefly rev
The narrow escape problem deals with the calculation of the mean escape time (MET) of a Brownian particle from a bounded domain through a small hole on the domains boundary. Here we develop a formalism that allows us to evaluate the emph{non-escape p
The time which a diffusing particle spends in a certain region of space is known as the occupation time, or the residence time. Recently the joint occupation time statistics of an ensemble of non-interacting particles was addressed using the single-p
We study fluctuations of particle absorption by a three-dimensional domain with multiple absorbing patches. The domain is in contact with a gas of interacting diffusing particles. This problem is motivated by living cell sensing via multiple receptor
We consider a particle diffusing outside a compact planar set and investigate its boundary local time $ell_t$, i.e., the rescaled number of encounters between the particle and the boundary up to time $t$. In the case of a disk, this is also the (resc