ﻻ يوجد ملخص باللغة العربية
We study fluctuations of particle absorption by a three-dimensional domain with multiple absorbing patches. The domain is in contact with a gas of interacting diffusing particles. This problem is motivated by living cell sensing via multiple receptors distributed over the cell surface. Employing the macroscopic fluctuation theory, we calculate the covariance matrix of the particle absorption by different patches, extending previous works which addressed fluctuations of a single current. We find a condition when the sign of correlations between different patches is fully determined by the transport coefficients of the gas and is independent of the problems geometry. We show that the fluctuating particle flux field typically develops vorticity. We establish a simple connection between the statistics of particle absorption by all the patches combined and the statistics of current in a non-equilibrium steady state in one dimension. We also discuss connections between the absorption statistics and (i) statistics of electric currents in multi-terminal diffusive conductors and (ii) statistics of wave transmission through disordered media with multiple absorbers.
At finite concentrations of reacting molecules, kinetics of diffusion-controlled reactions is affected by intra-reactant interactions. As a result, multi-particle reaction statistics cannot be deduced from single-particle results. Here we briefly rev
The narrow escape problem deals with the calculation of the mean escape time (MET) of a Brownian particle from a bounded domain through a small hole on the domains boundary. Here we develop a formalism that allows us to evaluate the emph{non-escape p
The time which a diffusing particle spends in a certain region of space is known as the occupation time, or the residence time. Recently the joint occupation time statistics of an ensemble of non-interacting particles was addressed using the single-p
Suppose that a $d$-dimensional domain is filled with a gas of (in general, interacting) diffusive particles with density $n_0$. A particle is absorbed whenever it reaches the domain boundary. Employing macroscopic fluctuation theory, we evaluate the
We investigate how confinement may drastically change both the probability density of the first-encounter time and the related survival probability in the case of two diffusing particles. To obtain analytical insights into this problem, we focus on t