ﻻ يوجد ملخص باللغة العربية
In order to examine how the terrestrial life emerged, a number of laboratory experiments have been conducted since the 1950s. Methane has been one of the key molecules in these studies. In earlier studies, strongly reducing gas mixtures containing methane and ammonia were mainly used to simulate possible reactions in primitive Earth atmosphere, and amino acids and other organic compounds were detected. Since the primitive Earth atmosphere was estimated to be less reducing, contribution of extraterrestrial organics to the origin of life is considered quite important. Extraterrestrial organic chemistry has been experimentally and theoretically studied intensively, including laboratory experiments simulating interstellar molecular reactions. Endogenous and exogenous organics should have been supplied to the primitive ocean. Now submarine hydrothermal systems are considered one of the plausible sites of generation of life. Experiments simulating submarine hydrothermal systems where methane played an important role are now intensively being conducted. We have recognized the importance of such studies on possible reactions in other solar system bodies to understand the origins of life. Titan and other icy bodies, where methane plays significant roles, are especially good targets to be studied. In the case of Titan, not only methane-containing atmospheres but also liquidospheres composed of methane and other hydrocarbons have been used in simulation experiments. This paper summarizes experiments simulating various terrestrial and extraterrestrial environments, and possible roles of methane in chemical evolution are discussed.
The relationship between the Near-Earth Objects (3200) Phaethon and (155140) 2005 UD is unclear. While both are parents to Meteor Showers, (the Geminids and Daytime Sextantids, respectively), have similar visible-wavelength reflectance spectra and or
We are now on a clear trajectory for improvements in exoplanet observations that will revolutionize our ability to characterize their atmospheric structure, composition, and circulation, from gas giants to rocky planets. However, exoplanet atmospheri
Very little experimental work has been done to explore the properties of photochemical hazes formed in atmospheres with very different compositions or temperatures than that of the outer solar system or of early Earth. With extrasolar planet discover
Aims. Formamide (HCONH2) is the simplest molecule containing the peptide bond first detected in the gas phase in Orion-KL and SgrB2. In recent years, it has been observed in high temperature regions such as hot corinos, where thermal desorption is re
Researchers have found that the metabolisms of organisms appear to scale proportionally to a 3/4 power of their mass. Mathematics in this article suggests that the capacity of an isotropically radiating energy supply scales up by a 4/3 power as its s