ﻻ يوجد ملخص باللغة العربية
We address the question of convergence of Schrodinger operators on metric graphs with general self-adjoint vertex conditions as lengths of some of graphs edges shrink to zero. We determine the limiting operator and study convergence in a suitable norm resolvent sense. It is noteworthy that, as edge lengths tend to zero, standard Sobolev-type estimates break down, making convergence fail for some graphs. We use a combination of functional-analytic bounds on the edges of the graph and Lagrangian geometry considerations for the vertex conditions to establish a sufficient condition for convergence. This condition encodes an intricate balance between the topology of the graph and its vertex data. In particular, it does not depend on the potential, on the differences in the rates of convergence of the shrinking edges, or on the lengths of the unaffected edges.
We consider the Schrodinger operator $H_{eta W} = -Delta + eta W$, self-adjoint in $L^2({mathbb R}^d)$, $d geq 1$. Here $eta$ is a non constant almost periodic function, while $W$ decays slowly and regularly at infinity. We study the asymptotic behav
We study the direct and inverse scattering problem for the one-dimensional Schrodinger equation with steplike potentials. We give necessary and sufficient conditions for the scattering data to correspond to a potential with prescribed smoothness and
We consider a $2times 2$ system of 1D semiclassical differential operators with two Schrodinger operators in the diagonal part and small interactions of order $h^ u$ in the off-diagonal part, where $h$ is a semiclassical parameter and $ u$ is a const
We study perturbations of the self-adjoint periodic Sturm--Liouville operator [ A_0 = frac{1}{r_0}left(-frac{mathrm d}{mathrm dx} p_0 frac{mathrm d}{mathrm dx} + q_0right) ] and conclude under $L^1$-assumptions on the differences of the coefficient
The principal aim of this paper is to employ Bessel-type operators in proving the inequality begin{align*} int_0^pi dx , |f(x)|^2 geq dfrac{1}{4}int_0^pi dx , dfrac{|f(x)|^2}{sin^2 (x)}+dfrac{1}{4}int_0^pi dx , |f(x)|^2,quad fin H_0^1 ((0,pi)), end{a