ﻻ يوجد ملخص باللغة العربية
The principal aim of this paper is to employ Bessel-type operators in proving the inequality begin{align*} int_0^pi dx , |f(x)|^2 geq dfrac{1}{4}int_0^pi dx , dfrac{|f(x)|^2}{sin^2 (x)}+dfrac{1}{4}int_0^pi dx , |f(x)|^2,quad fin H_0^1 ((0,pi)), end{align*} where both constants $1/4$ appearing in the above inequality are optimal. In addition, this inequality is strict in the sense that equality holds if and only if $f equiv 0$. This inequality is derived with the help of the exactly solvable, strongly singular, Dirichlet-type Schr{o}dinger operator associated with the differential expression begin{align*} tau_s=-dfrac{d^2}{dx^2}+dfrac{s^2-(1/4)}{sin^2 (x)}, quad s in [0,infty), ; x in (0,pi). end{align*} The new inequality represents a refinement of Hardys classical inequality begin{align*} int_0^pi dx , |f(x)|^2 geq dfrac{1}{4}int_0^pi dx , dfrac{|f(x)|^2}{x^2}, quad fin H_0^1 ((0,pi)), end{align*} it also improves upon one of its well-known extensions in the form begin{align*} int_0^pi dx , |f(x)|^2 geq dfrac{1}{4}int_0^pi dx , dfrac{|f(x)|^2}{d_{(0,pi)}(x)^2}, quad fin H_0^1 ((0,pi)), end{align*} where $d_{(0,pi)}(x)$ represents the distance from $x in (0,pi)$ to the boundary ${0,pi}$ of $(0,pi)$.
We study the quadratic form associated to the kinetic energy operator in the presence of an external magnetic field in d = 3. We show that if the radial component of the magnetic field does not vanish identically, then the classical lower bound given
We study perturbations of the self-adjoint periodic Sturm--Liouville operator [ A_0 = frac{1}{r_0}left(-frac{mathrm d}{mathrm dx} p_0 frac{mathrm d}{mathrm dx} + q_0right) ] and conclude under $L^1$-assumptions on the differences of the coefficient
We show that for a Jacobi operator with coefficients whose (j+1)th moments are summable the jth derivative of the scattering matrix is in the Wiener algebra of functions with summable Fourier coefficients. We use this result to improve the known disp
We consider a $2times 2$ system of 1D semiclassical differential operators with two Schrodinger operators in the diagonal part and small interactions of order $h^ u$ in the off-diagonal part, where $h$ is a semiclassical parameter and $ u$ is a const
We address the question of convergence of Schrodinger operators on metric graphs with general self-adjoint vertex conditions as lengths of some of graphs edges shrink to zero. We determine the limiting operator and study convergence in a suitable nor