ترغب بنشر مسار تعليمي؟ اضغط هنا

Inverse scattering theory for Schrodinger operators with steplike potentials

91   0   0.0 ( 0 )
 نشر من قبل Gerald Teschl
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the direct and inverse scattering problem for the one-dimensional Schrodinger equation with steplike potentials. We give necessary and sufficient conditions for the scattering data to correspond to a potential with prescribed smoothness and prescribed decay to their asymptotics. These results are important for solving the Korteweg-de Vries equation via the inverse scattering transform.



قيم البحث

اقرأ أيضاً

146 - R. O. Hryniv , Ya. V. Mykytyuk , 2009
This is the second in a series of papers on scattering theory for one-dimensional Schrodinger operators with Miura potentials admitting a Riccati representation of the form $q=u+u^2$ for some $uin L^2(R)$. We consider potentials for which there exist `left and `right Riccati representatives with prescribed integrability on half-lines. This class includes all Faddeev--Marchenko potentials in $L^1(R,(1+|x|)dx)$ generating positive Schrodinger operators as well as many distributional potentials with Dirac delta-functions and Coulomb-like singularities. We completely describe the corresponding set of reflection coefficients $r$ and justify the algorithm reconstructing $q$ from $r$.
This is the first in a series of papers on scattering theory for one-dimensional Schrodinger operators with highly singular potentials $qin H^{-1}(R)$. In this paper, we study Miura potentials $q$ associated to positive Schrodinger operators that adm it a Riccati representation $q=u+u^2$ for a unique $uin L^1(R)cap L^2(R)$. Such potentials have a well-defined reflection coefficient $r(k)$ that satisfies $|r(k)|<1$ and determines $u$ uniquely. We show that the scattering map $S:umapsto r$ is real-analytic with real-analytic inverse. To do so, we exploit a natural complexification of the scattering map associated with the ZS-AKNS system. In subsequent papers, we will consider larger classes of potentials including singular potentials with bound states.
521 - Georgi Raikov 2015
We consider the Schrodinger operator $H_{eta W} = -Delta + eta W$, self-adjoint in $L^2({mathbb R}^d)$, $d geq 1$. Here $eta$ is a non constant almost periodic function, while $W$ decays slowly and regularly at infinity. We study the asymptotic behav iour of the discrete spectrum of $H_{eta W}$ near the origin, and due to the irregular decay of $eta W$, we encounter some non semiclassical phenomena. In particular, $H_{eta W}$ has less eigenvalues than suggested by the semiclassical intuition.
We propose a new method to prove Anderson localization for quasiperiodic Schrodinger operators and apply it to the quasiperiodic model considered by Sinai and Frohlich-Spencer-Wittwer. More concretely, we prove Anderson localization for even $C^2$ co sine type quasiperiodic Schrodinger operators with large coupling constants, Diophantine frequencies and Diophantine phases.
Let $H_0 = -Delta + V_0(x)$ be a Schroedinger operator on $L_2(mathbb{R}^ u),$ $ u=1,2,$ or 3, where $V_0(x)$ is a bounded measurable real-valued function on $mathbb{R}^ u.$ Let $V$ be an operator of multiplication by a bounded integrable real-valued function $V(x)$ and put $H_r = H_0+rV$ for real $r.$ We show that the associated spectral shift function (SSF) $xi$ admits a natural decomposition into the sum of absolutely continuous $xi^{(a)}$ and singular $xi^{(s)}$ SSFs. This is a special case of an analogous result for resolvent comparable pairs of self-adjoint operators, which generalises the known case of a trace class perturbation while also simplifying its proof. We present two proofs -- one short and one long -- which we consider to have value of their own. The long proof along the way reframes some classical results from the perturbation theory of self-adjoint operators, including the existence and completeness of the wave operators and the Birman-Krein formula relating the scattering matrix and the SSF. The two proofs demonstrate the equality of the singular SSF with two a priori different but intrinsically integer-valued functions: the total resonance index and the singular $mu$-invariant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا