ترغب بنشر مسار تعليمي؟ اضغط هنا

High Resolution Spectroscopy using Fabry Perot Intereferometer Arrays: An Application to Searches for O$_{2}$ in Exoplanetary Atmospheres

64   0   0.0 ( 0 )
 نشر من قبل Sagi Ben-Ami
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Sagi Ben-Ami




اسأل ChatGPT حول البحث

We present a novel implementation for extremely high resolution spectroscopy using custom-designed Fabry Perot Interferometer (FPI) arrays. For a given telescope aperture at the seeing limited case, these arrays can achieve resolutions well in excess of ${rm Rsim10^5}$ using optical elements orders of magnitude smaller in size than standard echelle spectrographs of similar resolution. We apply this method specifically to the search for molecular oxygen in exoplanetary atmospheres using the ${rm O_2}$ A-band at 0.76 ${rm mu m}$, and show how a FPI array composed of $sim10$ etalons with parameters optimized for this science case can record ${rm R=3-5,cdot10^5}$ spectra covering the full ${rm O_2}$ A-band. Using simulated observations of the atmosphere of a transiting nearby Earth-like planet, we show how observations with a FPI array coupled to a long-slit spectrograph can reduce the number of transit observations needed to produce a ${rm 3sigma}$ detection of ${rm O_2}$ by $sim30%$ compared to observations with a ${rm R=10^5}$ echelle spectrograph. This, in turn, leads to a decrease in an observing program duration of several years. The number of transits needed for a ${rm 3sigma}$ detection can be further reduced by increasing the efficiency of FPI arrays using dualons (an etalon with a buried reflective layer), and by coupling the FPI array to a dedicated spectrograph optimized for the ${rm O_2}$ A-band.



قيم البحث

اقرأ أيضاً

An all-fiber, micro-pulse and eye-safe high spectral resolution wind lidar (HSRWL) at 1550nm is proposed and demonstrated by using a pair of upconversion single-photon detectors and a fiber Fabry-Perot scanning interferometer (FFP-SI). In order to im prove the optical detection efficiency, both the transmission spectrum and the reflection spectrum of the FFP-SI are used for spectral analyses of the aerosol backscatter and the reference laser pulse. The reference signal is tapped from the outgoing laser and served as a zero velocity indicator. The Doppler shift is retrieved from a frequency response function Q, which is defined as the ratio of difference of the transmitted signal and the reflected signal to their sum. Taking advantages of high signal-to-noise ratio of the detectors and high spectral resolution of the FFP-SI, the Q spectra of the aerosol backscatter are reconstructed along the line-of-sight (LOS) of the telescope. By applying a least squares fit procedure to the measured Q spectra, the center frequencies and the bandwidths are obtained simultaneously. And then the Doppler shifts are determined relative to the center frequency of the reference signal. To eliminate the influence of temperature fluctuations on the FFP-SI, the FFP-SI is cased in a chamber with temperature stability of 0.001 during the measurement. Continuous LOS wind observations are carried out on two days at Hefei (31.843 N, 117.265 E), China. In the meantime, LOS wind measurements from the HSRWL show good agreement with the results from an ultrasonic wind sensor (Vaisala windcap WMT52). Due to the computational expensive of the convolution operation of the Q function, an empirical method is adopted to evaluate the quality of the measurements. The standard deviation of the wind speed is 0.76 m/s at the 1.8 km. The standard deviation of the retrieved bandwidth variation is 2.07 MHz at the 1.8 km.
The study of Earth-mass extrasolar planets via the radial-velocity technique and the measurement of the potential cosmological variability of fundamental constants call for very-high-precision spectroscopy at the level of $updeltalambda/lambda<10^{-9 }$. Wavelength accuracy is obtained by providing two fundamental ingredients: 1) an absolute and information-rich wavelength source and 2) the ability of the spectrograph and its data reduction of transferring the reference scale (wavelengths) to a measurement scale (detector pixels) in a repeatable manner. The goal of this work is to improve the wavelength calibration accuracy of the HARPS spectrograph by combining the absolute spectral reference provided by the emission lines of a thorium-argon hollow-cathode lamp (HCL) with the spectrally rich and precise spectral information of a Fabry-Perot-based calibration source. On the basis of calibration frames acquired each night since the Fabry-Perot etalon was installed on HARPS in 2011, we construct a combined wavelength solution which fits simultaneously the thorium emission lines and the Fabry-Perot lines. The combined fit is anchored to the absolute thorium wavelengths, which provide the `zero-point of the spectrograph, while the Fabry-Perot lines are used to improve the (spectrally) local precision. The obtained wavelength solution is verified for auto-consistency and tested against a solution obtained using the HARPS Laser-Frequency Comb (LFC). The combined thorium+Fabry-Perot wavelength solution shows significantly better performances compared to the thorium-only calibration. The presented techniques will therefore be used in the new HARPS and HARPS-N pipeline, and will be exported to the ESPRESSO spectrograph.
We present a novel remote gas detection and identification technique based on correlation spectroscopy with a piezoelectric tunable fibre-optic Fabry-Perot filter. We show that the spectral correlation amplitude between the filter transmission window and gas absorption features is related to the gas absorption optical depth, and that different gases can be distinguished from one another using their correlation signal phase. Using an observed telluric-corrected, high-resolution near-infrared spectrum of Venus, we show via simulation that the Doppler shift of gases lines can be extracted from the phase of the lock-in signal using low-cost, compact, and lightweight fibre-optic components with lock-in amplification to improve the signal-to-noise ratio. This correlation spectroscopy technique has applications in the detection and radial velocity determination of faint spectral features in astronomy and remote sensing. We experimentally demonstrate remote CO2 detection system using a lock-in amplifier, fibre-optic Fabry-Perot filter, and single channel photodiode.
271 - D. Defr`ere , A. Leger , O. Absil 2018
The quest for other habitable worlds and the search for life among them are major goals of modern astronomy. One way to make progress towards these goals is to obtain high-quality spectra of a large number of exoplanets over a broad range of waveleng ths. While concepts currently investigated in the United States are focused on visible/NIR wavelengths, where the planets are probed in reflected light, a compelling alternative to characterize planetary atmospheres is the mid-infrared waveband (5-20~$mu$m). Indeed, mid-infrared observations provide key information on the presence of an atmosphere, the surface conditions (e.g., temperature, pressure, habitability), and the atmospheric composition in important species such as H$_2$O, CO$_2$, O$_3$, CH$_4$, and N$_2$O. This information is essential to investigate the potential habitability of exoplanets and to make progress towards the search for life in the universe. Obtaining high-quality mid-infrared spectra of exoplanets from the ground is however extremely challenging due to the overwhelming brightness and turbulence of Earths atmosphere. In this paper, we present a concept of space-based mid-infrared interferometer that can tackle this observing challenge and discuss the main technological developments required to launch such a sophisticated instrument.
139 - Jonathan J. Fortney 2018
We review several aspects of the calculation of exoplanet model atmospheres in the current era, with a focus on understanding the temperature-pressure profiles of atmospheres and their emitted spectra. Most of the focus is on gas giant planets, both under strong stellar irradiation and in isolation. The roles of stellar irradiation, metallicity, surface gravity, C/O ratio, interior fluxes, and cloud opacity are discussed. Connections are made to the well-studied atmospheres of brown dwarfs as well as sub-Neptunes and terrestrial planets, where appropriate. Illustrative examples of model atmosphere retrievals on a thermal emission spectrum are given and connections are made between atmospheric abundances and the predictions of planet formation models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا