ترغب بنشر مسار تعليمي؟ اضغط هنا

All-fiber upconversion high spectral resolution wind lidar using a Fabry-Perot interferometer

254   0   0.0 ( 0 )
 نشر من قبل Qiang Zhang
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An all-fiber, micro-pulse and eye-safe high spectral resolution wind lidar (HSRWL) at 1550nm is proposed and demonstrated by using a pair of upconversion single-photon detectors and a fiber Fabry-Perot scanning interferometer (FFP-SI). In order to improve the optical detection efficiency, both the transmission spectrum and the reflection spectrum of the FFP-SI are used for spectral analyses of the aerosol backscatter and the reference laser pulse. The reference signal is tapped from the outgoing laser and served as a zero velocity indicator. The Doppler shift is retrieved from a frequency response function Q, which is defined as the ratio of difference of the transmitted signal and the reflected signal to their sum. Taking advantages of high signal-to-noise ratio of the detectors and high spectral resolution of the FFP-SI, the Q spectra of the aerosol backscatter are reconstructed along the line-of-sight (LOS) of the telescope. By applying a least squares fit procedure to the measured Q spectra, the center frequencies and the bandwidths are obtained simultaneously. And then the Doppler shifts are determined relative to the center frequency of the reference signal. To eliminate the influence of temperature fluctuations on the FFP-SI, the FFP-SI is cased in a chamber with temperature stability of 0.001 during the measurement. Continuous LOS wind observations are carried out on two days at Hefei (31.843 N, 117.265 E), China. In the meantime, LOS wind measurements from the HSRWL show good agreement with the results from an ultrasonic wind sensor (Vaisala windcap WMT52). Due to the computational expensive of the convolution operation of the Q function, an empirical method is adopted to evaluate the quality of the measurements. The standard deviation of the wind speed is 0.76 m/s at the 1.8 km. The standard deviation of the retrieved bandwidth variation is 2.07 MHz at the 1.8 km.



قيم البحث

اقرأ أيضاً

Ultrahigh-resolution fiber-optic sensing has been demonstrated with a meter-long, high-finesse fiber Fabry-Perot interferometer (FFPI). The main technical challenge of large, environment-induced resonance frequency drift is addressed by locking the i nterrogation laser to a similar meter-long FFPI, which, along with the FFPI sensor, is thermally and mechanically isolated from the ambient. A nominal, noise-limited strain resolution of 800 f{epsilon} /sqrt(Hz) has been achieved within 1 to 100 Hz. Strain resolution further improves to 75 f{epsilon} /sqrt(Hz) at 1 kHz, 60 f{epsilon} /sqrt(Hz) at 2 kHz and 40 f{epsilon} /sqrt(Hz) at 23 kHz, demonstrating comparable or even better resolutions than proven techniques such as {pi}-phase-shifted and slow-light fiber Bragg gratings. Limitations of the current system are analyzed and improvement strategies are presented. The work lays out a feasible path toward ultrahigh-resolution fiber-optic sensing based on long FFPIs.
73 - E. Janitz , M. Ruf , Y. Fontana 2017
Fiber-based optical microcavities exhibit high quality factor and low mode volume resonances that make them attractive for coupling light to individual atoms or other microscopic systems. Moreover, their low mass should lead to excellent mechanical r esponse up to high frequencies, opening the possibility for high bandwidth stabilization of the cavity length. Here, we demonstrate a locking bandwidth of 44 kHz achieved using a simple, compact design that exploits these properties. Owing to the simplicity of fiber feedthroughs and lack of free-space alignment, this design is inherently compatible with vacuum and cryogenic environments. We measure the transfer function of the feedback circuit (closed-loop) and the cavity mount itself (open-loop), which, combined with simulations of the mechanical response of our device, provide insight into underlying limitations of the design as well as further improvements that can be made.
214 - C. Kuckein 2017
A huge amount of data has been acquired with the GREGOR Fabry-Perot Interferometer (GFPI), large-format facility cameras, and since 2016 with the High-resolution Fast Imager (HiFI). These data are processed in standardized procedures with the aim of providing science-ready data for the solar physics community. For this purpose, we have developed a user-friendly data reduction pipeline called sTools based on the Interactive Data Language (IDL) and licensed under creative commons license. The pipeline delivers reduced and image-reconstructed data with a minimum of user interaction. Furthermore, quick-look data are generated as well as a webpage with an overview of the observations and their statistics. All the processed data are stored online at the GREGOR GFPI and HiFI data archive of the Leibniz Institute for Astrophysics Potsdam (AIP). The principles of the pipeline are presented together with selected high-resolution spectral scans and images processed with sTools.
172 - A.V. Moiseev 2021
The scanning Fabry-Perot interferometer (FPI) - is the oldest method of optical 3D spectroscopy. It is still in use because of the high spectral resolution it provides over a large field of view. The history of the application of this method for the study of extended ob jects (nebulae and galaxies) and the technique of data reduction and analysis are discussed. The paper focuses on the performing observations with the scanning FPI on the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS). The instrument is currently used as a part of the SCORPIO-2 multimode focal reducer. The results of studies of various galactic and extragalactic objects with the scanning FPI on the 6-m telescope - star-forming regions and young stellar objects, spiral, ring, dwarf and interacting galaxies, ionization cones of active galactic nuclei, galactic winds, etc. are briefly discussed. Further prospects for research with the scanning FPI of the SAO RAS are discussed.
63 - Sagi Ben-Ami 2018
We present a novel implementation for extremely high resolution spectroscopy using custom-designed Fabry Perot Interferometer (FPI) arrays. For a given telescope aperture at the seeing limited case, these arrays can achieve resolutions well in excess of ${rm Rsim10^5}$ using optical elements orders of magnitude smaller in size than standard echelle spectrographs of similar resolution. We apply this method specifically to the search for molecular oxygen in exoplanetary atmospheres using the ${rm O_2}$ A-band at 0.76 ${rm mu m}$, and show how a FPI array composed of $sim10$ etalons with parameters optimized for this science case can record ${rm R=3-5,cdot10^5}$ spectra covering the full ${rm O_2}$ A-band. Using simulated observations of the atmosphere of a transiting nearby Earth-like planet, we show how observations with a FPI array coupled to a long-slit spectrograph can reduce the number of transit observations needed to produce a ${rm 3sigma}$ detection of ${rm O_2}$ by $sim30%$ compared to observations with a ${rm R=10^5}$ echelle spectrograph. This, in turn, leads to a decrease in an observing program duration of several years. The number of transits needed for a ${rm 3sigma}$ detection can be further reduced by increasing the efficiency of FPI arrays using dualons (an etalon with a buried reflective layer), and by coupling the FPI array to a dedicated spectrograph optimized for the ${rm O_2}$ A-band.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا