ﻻ يوجد ملخص باللغة العربية
We give an overview of QPACE 2, which is a custom-designed supercomputer based on Intel Xeon Phi processors, developed in a collaboration of Regensburg University and Eurotech. We give some general recommendations for how to write high-performance code for the Xeon Phi and then discuss our implementation of a domain-decomposition-based solver and present a number of benchmarks.
Load balancing is a widely accepted technique for performance optimization of scientific applications on parallel architectures. Indeed, balanced applications do not waste processor cycles on waiting at points of synchronization and data exchange, ma
In addition to hardware wall-time restrictions commonly seen in high-performance computing systems, it is likely that future systems will also be constrained by energy budgets. In the present work, finite difference algorithms of varying computationa
The most computationally demanding part of Lattice QCD simulations is solving quark propagators. Quark propagators are typically obtained with a linear equation solver utilizing HPC machines. The CCS QCD Benchmark is a benchmark program solving the W
We propose a solution to the increased computational demands of Extremely Large Telescope (ELT) scale adaptive optics (AO) real-time control with the Intel Xeon Phi Knights Landing (KNL) Many Integrated Core (MIC) Architecture. The computational dema
We describe our experience porting the Regensburg implementation of the DD-$alpha$AMG solver from QPACE 2 to QPACE 3. We first review how the code was ported from the first generation Intel Xeon Phi processor (Knights Corner) to its successor (Knight