ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum plasmonic N00N state in a silver nanowire and its use for quantum sensing

58   0   0.0 ( 0 )
 نشر من قبل Xifeng Ren
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The control of quantum states of light at the nanoscale has become possible in recent years with the use of plasmonics. Here, many types of nanophotonic devices and applications have been suggested that take advantage of quantum optical effects, despite the inherent presence of loss. A key example is quantum plasmonic sensing, which provides sensitivity beyond the classical limit using entangled N00N states and their generalizations in a compact system operating below the diffraction limit. In this work, we experimentally demonstrate the excitation and propagation of a two-plasmon entangled N00N state (N=2) in a silver nanowire, and assess the performance of our system for carrying out quantum sensing. Polarization entangled photon pairs are converted into plasmons in the silver nanowire, which propagate over a distance of 5 um and re-convert back into photons. A full analysis of the plasmonic system finds that the high-quality entanglement is preserved throughout. We measure the characteristic super-resolution phase oscillations of the entangled state via coincidence measurements. We also identify various sources of loss in our setup and show how they can be mitigated, in principle, in order to reach super-sensitivity that goes beyond the classical sensing limit. Our results show that polarization entanglement can be preserved in a plasmonic nanowire and that sensing with a quantum advantage is possible with moderate loss present.

قيم البحث

اقرأ أيضاً

Plasmon-polaritons are among the most promising candidates for next generation optical sensors due to their ability to support extremely confined electromagnetic fields and empower strong coupling of light and matter. Here we propose quantum plasmoni c immunoassay sensing as an innovative scheme, which embeds immunoassay sensing with recently demonstrated room temperature strong coupling in nanoplasmonic cavities. In our protocol, the antibody-antigen-antibody complex is chemically linked with a quantum emitter label. Placing the quantum-emitter enhanced antibody-antigen-antibody complexes inside or close to a nanoplasmonic (hemisphere dimer) cavity facilitates strong coupling between the plasmon-polaritons and the emitter label resulting in signature Rabi splitting. Through rigorous statistical analysis of multiple analytes randomly distributed on the substrate in extensive realistic computational experiments, we demonstrate a drastic enhancement of the sensitivity up to nearly 1500% compared to conventional shifting-type plasmonic sensors. Most importantly and in stark contrast to classical sensing, we achieve in the strong-coupling (quantum) sensing regime an enhanced sensitivity that is no longer dependent on the concentration of antibody-antigen-antibody complexes -- down to the single-analyte limit. The quantum plasmonic immunoassay scheme thus not only leads to the development of plasmonic bio-sensing for single molecules but also opens up new pathways towards room-temperature quantum sensing enabled by biomolecular inspired protocols linked with quantum nanoplasmonics.
We experimentally demonstrate the active control of a plasmonic metamaterial operating in the quantum regime. A two-dimensional metamaterial consisting of unit cells made from gold nanorods is investigated. Using an external laser we control the temp erature of the metamaterial and carry out quantum process tomography on single-photon polarization-encoded qubits sent through, characterizing the metamaterial as a variable quantum channel. The overall polarization response can be tuned by up to 33% for particular nanorod dimensions. To explain the results, we develop a theoretical model and find that the experimental results match the predicted behavior well. This work goes beyond the use of simple passive quantum plasmonic systems and shows that external control of plasmonic elements enables a flexible device that can be used for quantum state engineering.
Quantum resources can enhance the sensitivity of a device beyond the classical shot noise limit and, as a result, revolutionize the field of metrology through the development of quantum-enhanced sensors. In particular, plasmonic sensors, which are wi dely used in biological and chemical sensing applications, offer a unique opportunity to bring such an enhancement to real-life devices. Here, we use bright entangled twin beams to enhance the sensitivity of a plasmonic sensor used to measure local changes in refractive index. We demonstrate a 56% quantum enhancement in the sensitivity of state-of-the-art plasmonic sensor with measured sensitivities on the order of $10^{-10}$RIU$/sqrt{textrm{Hz}}$, nearly 5 orders of magnitude better than previous proof-of-principle implementations of quantum-enhanced plasmonic sensors. These results promise significant enhancements in ultratrace label free plasmonic sensing and will find their way into areas ranging from biomedical applications to chemical detection.
We demonstrate an unexpectedly strong surface-plasmonic absorption at the interface of silver and high-index dielectrics based on electron and photon spectroscopy. The measured bandwidth and intensity of absorption deviate significantly from the clas sical theory. Our density-functional calculation well predicts the occurrence of this phenomenon. It reveals that due to the low metal-to-dielectric work function at such interfaces, conduction electrons can display a drastic quantum spillover, causing the interfacial electron-hole pair production to dominate the decay of surface plasmons. This finding can be of fundamental importance in understanding and designing quantum nano-plasmonic devices that utilize noble metals and high-index dielectrics.
Based on two-photon entanglement, quantum remote sensing enables the measurement and detection to be done non-locally and remotely. However, little attention has been paid to implement a noncontact way to sense a real objects angular rotation, which is a key step towards the practical applications of precise measurements with entangled twisted photons. Here, we use photon pairs entangled in orbital angular momentum (OAM) to show that a real objects angular rotation can be measured non-locally. Our experiment reveals that the angular sensitivity of the object encoded with idler photons is proportional to the measured OAM values of signal photons. It suggests potential applications in developing a noncontact way for angle remote sensing of an object with customized measurement resolution. Moreover, this feature may provide potential application in sensing of some light-sensitive specimens when the entangled photon pairs, which have significantly different wavelengths, are used, such as one photon is infrared but the other one is visible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا