ﻻ يوجد ملخص باللغة العربية
We experimentally demonstrate the active control of a plasmonic metamaterial operating in the quantum regime. A two-dimensional metamaterial consisting of unit cells made from gold nanorods is investigated. Using an external laser we control the temperature of the metamaterial and carry out quantum process tomography on single-photon polarization-encoded qubits sent through, characterizing the metamaterial as a variable quantum channel. The overall polarization response can be tuned by up to 33% for particular nanorod dimensions. To explain the results, we develop a theoretical model and find that the experimental results match the predicted behavior well. This work goes beyond the use of simple passive quantum plasmonic systems and shows that external control of plasmonic elements enables a flexible device that can be used for quantum state engineering.
In this paper, a novel design concept for active self-adaptive metamaterial (ASAMM) plates is proposed based on an active self-adaptive (ASA) control strategy guided by the particle swarm optimization (PSO) technique. The ASAMM plates consist of an e
The control of quantum states of light at the nanoscale has become possible in recent years with the use of plasmonics. Here, many types of nanophotonic devices and applications have been suggested that take advantage of quantum optical effects, desp
Two-dimensional (2D) materials and heterostructures have recently gained wide attention due to potential applications in optoelectronic devices. However, the optical properties of the heterojunction have not been properly characterized due to the lim
We give an overview of different paradigms for control of quantum systems and their applications, illustrated with specific examples. We further discuss the implications of fault-tolerance requirements for quantum process engineering using optimal co
A quantum metamaterial can be implemented as a quantum coherent 1D array of qubits placed in a transmission line. The properties of quantum metamaterials are determined by the local quantum state of the system. Here we show that a spatially-periodic