ﻻ يوجد ملخص باللغة العربية
Abraham Lorentz (AL) formula of Radiation Reaction and its relativistic generalization, Abraham Lorentz Dirac (ALD) formula, are valid only for periodic (accelerated) motion of a charged particle, where the particle returns back to its original state. Thus, they both represent time averaged solutions for radiation reaction force. In this paper, another expression has been derived for radiation reaction following a new approach, starting from Larmor formula, considering instantaneous change (rather than periodic change) in velocity, which is a more realistic situation. Further, it has been also shown that the new expression for Radiation Reaction is free of pathological solutions; which were unpleasant parts of AL as well as ALD equations; and remained unresolved for about 100 years.
We develop a numerical formulation to calculate the classical motion of charges in strong electromagnetic fields, such as those occurring in high-intensity laser beams. By reformulating the dynamics in terms of SL(2,C) matrices representing the Loren
Finding the exact equation of motion for a moving charged particle is one of the oldest open problems in physics. The problem originates in the emission of radiation by an accelerated charge, which must result with a loss of energy and recoil of the
In this paper we analyze the classical electromagnetic radiation of an accelerating point charge moving on a straight line trajectory. Depending on the duration of accelerations, rapidity distributions of photons emerge, resembling the ones obtained
We discuss radiation reaction effects on charges propagating in ultra-intense laser fields. Our analysis is based on an analytic solution of the Landau-Lifshitz equation. We suggest to measure radiation reaction in terms of a symmetry breaking parame
It is well-known that a classical point charge in 1+1 D hyperbolic motion in space and time is reaction-free. But this is a special case of a larger set of reaction-free trajectories that in general are curved paths through space, i.e. in 2+1 D. This