ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards Precision Measurements of Radiation Reaction

88   0   0.0 ( 0 )
 نشر من قبل Yarden Sheffer
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Finding the exact equation of motion for a moving charged particle is one of the oldest open problems in physics. The problem originates in the emission of radiation by an accelerated charge, which must result with a loss of energy and recoil of the charge, adding a correction to the well-known Lorentz force. When radiation reaction is neglected, it is well known that the dynamics of a charge in a plane-wave laser field are inevitably periodic. Here we investigate the long-time dynamics of a charge in a plane wave and show that all current models of radiation reaction strictly forbid periodic dynamics. Consequently, we find that the loss of energy due to radiation reaction actually causes particles to asymptotically accelerate to infinite kinetic energy. Such a phenomenon persists even in weak laser fields and puts forward the possibility of testing the open problem of radiation reaction through long-duration weak-field precision measurements, rather than through strong-field experiments. Our findings suggest realistic conditions for such measurements through the asymptotic frequency shift and energy loss of a charge, which for example can be detected in electron energy loss spectrometers in electron microscopes.

قيم البحث

اقرأ أيضاً

We discuss radiation reaction effects on charges propagating in ultra-intense laser fields. Our analysis is based on an analytic solution of the Landau-Lifshitz equation. We suggest to measure radiation reaction in terms of a symmetry breaking parame ter associated with the violation of null translation invariance in the direction opposite to the laser beam. As the Landau-Lifshitz equation is nonlinear the energy transfer within the pulse is rather sensitive to initial conditions. This is elucidated by comparing colliding and fixed target modes in electron laser collisions.
102 - Nikhil D. Hadap 2018
Abraham Lorentz (AL) formula of Radiation Reaction and its relativistic generalization, Abraham Lorentz Dirac (ALD) formula, are valid only for periodic (accelerated) motion of a charged particle, where the particle returns back to its original state . Thus, they both represent time averaged solutions for radiation reaction force. In this paper, another expression has been derived for radiation reaction following a new approach, starting from Larmor formula, considering instantaneous change (rather than periodic change) in velocity, which is a more realistic situation. Further, it has been also shown that the new expression for Radiation Reaction is free of pathological solutions; which were unpleasant parts of AL as well as ALD equations; and remained unresolved for about 100 years.
73 - C. Harvey , T. Heinzl , N. Iji 2010
We develop a numerical formulation to calculate the classical motion of charges in strong electromagnetic fields, such as those occurring in high-intensity laser beams. By reformulating the dynamics in terms of SL(2,C) matrices representing the Loren tz group, our formulation maintains explicit covariance, in particular the mass-shell condition. Considering an electromagnetic plane wave field where the analytic solution is known as a test case, we demonstrate the effectiveness of the method for solving both the Lorentz force and the Landau-Lifshitz equations. The latter, a second order reduction of the Lorentz-Abraham-Dirac equation, describes radiation reaction without the usual pathologies.
In the perspective of the outstanding developments of high-precision measurements of fundamental constants using polar molecules related to ultimate checks of fundamental theories, we investigate the possibly counterproductive role of black-body radi ation on a series of diatomic molecules which would be trapped and observed for long durations. We show that the absorption of black-body radiation at room temperature may indeed limit the lifetime of trapped molecules prepared in a well-defined quantum state. Several examples are treated, corresponding to pure rotational absorption, pure vibrational absorption or both. We also investigate the role of a black-body radiation-induced energy shift on molecular levels and how it could affect high-precision frequency measurements.
153 - C. D. Baird 2018
Collisions between high intensity laser pulses and energetic electron beams are now used to measure the transition between the classical and quantum regimes of light-matter interactions. However, the energy spectrum of laser-wakefield-accelerated ele ctron beams can fluctuate significantly from shot to shot, making it difficult to clearly discern quantum effects in radiation reaction, for example. Here we show how this can be accomplished in only a single laser shot. A millimeter-scale pre-collision drift allows the electron beam to expand to a size larger than the laser focal spot and develop a correlation between transverse position and angular divergence. In contrast to previous studies, this means that a measurement of the beams energy-divergence spectrum automatically distinguishes components of the beam that hit or miss the laser focal spot and therefore do and do not experience radiation reaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا