ﻻ يوجد ملخص باللغة العربية
We discuss radiation reaction effects on charges propagating in ultra-intense laser fields. Our analysis is based on an analytic solution of the Landau-Lifshitz equation. We suggest to measure radiation reaction in terms of a symmetry breaking parameter associated with the violation of null translation invariance in the direction opposite to the laser beam. As the Landau-Lifshitz equation is nonlinear the energy transfer within the pulse is rather sensitive to initial conditions. This is elucidated by comparing colliding and fixed target modes in electron laser collisions.
The description of the dynamics of an electron in an external electromagnetic field of arbitrary intensity is one of the most fundamental outstanding problems in electrodynamics. Remarkably, to date there is no unanimously accepted theoretical soluti
When a high-contrast ultra-relativistic laser beam enters a micro-sized plasma waveguide, the pulse energy is coupled into waveguide modes, which remarkably modifies the interaction of electrons and electromagnetic wave. The electrons that pulled out
We develop a numerical formulation to calculate the classical motion of charges in strong electromagnetic fields, such as those occurring in high-intensity laser beams. By reformulating the dynamics in terms of SL(2,C) matrices representing the Loren
Rapid-advancing intense laser technologies enable the possibility of a direct laser-nucleus coupling. In this paper the effect of intense laser fields on a series of nuclear fission processes, including proton decay, alpha decay, and cluster decay, i
Non-linear cascade scattering of intense, tightly focused laser pulses by relativistic electrons is studied numerically in the classical approximation including the radiation damping for the quantum parameter hwx-ray/E<1 and an arbitrary radiation pa