ترغب بنشر مسار تعليمي؟ اضغط هنا

Do Outliers Ruin Collaboration?

81   0   0.0 ( 0 )
 نشر من قبل Mingda Qiao
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Mingda Qiao




اسأل ChatGPT حول البحث

We consider the problem of learning a binary classifier from $n$ different data sources, among which at most an $eta$ fraction are adversarial. The overhead is defined as the ratio between the sample complexity of learning in this setting and that of learning the same hypothesis class on a single data distribution. We present an algorithm that achieves an $O(eta n + ln n)$ overhead, which is proved to be worst-case optimal. We also discuss the potential challenges to the design of a computationally efficient learning algorithm with a small overhead.



قيم البحث

اقرأ أيضاً

144 - Zixiu Wang , Yiwen Guo , Hu Ding 2021
In this big data era, we often confront large-scale data in many machine learning tasks. A common approach for dealing with large-scale data is to build a small summary, {em e.g.,} coreset, that can efficiently represent the original input. However, real-world datasets usually contain outliers and most existing coreset construction methods are not resilient against outliers (in particular, the outliers can be located arbitrarily in the space by an adversarial attacker). In this paper, we propose a novel robust coreset method for the {em continuous-and-bounded learning} problem (with outliers) which includes a broad range of popular optimization objectives in machine learning, like logistic regression and $ k $-means clustering. Moreover, our robust coreset can be efficiently maintained in fully-dynamic environment. To the best of our knowledge, this is the first robust and fully-dynamic coreset construction method for these optimization problems. We also conduct the experiments to evaluate the effectiveness of our robust coreset in practice.
The subspace approximation problem with outliers, for given $n$ points in $d$ dimensions $x_{1},ldots, x_{n} in R^{d}$, an integer $1 leq k leq d$, and an outlier parameter $0 leq alpha leq 1$, is to find a $k$-dimensional linear subspace of $R^{d}$ that minimizes the sum of squared distances to its nearest $(1-alpha)n$ points. More generally, the $ell_{p}$ subspace approximation problem with outliers minimizes the sum of $p$-th powers of distances instead of the sum of squared distances. Even the case of robust PCA is non-trivial, and previous work requires additional assumptions on the input. Any multiplicative approximation algorithm for the subspace approximation problem with outliers must solve the robust subspace recovery problem, a special case in which the $(1-alpha)n$ inliers in the optimal solution are promised to lie exactly on a $k$-dimensional linear subspace. However, robust subspace recovery is Small Set Expansion (SSE)-hard. We show how to extend dimension reduction techniques and bi-criteria approximations based on sampling to the problem of subspace approximation with outliers. To get around the SSE-hardness of robust subspace recovery, we assume that the squared distance error of the optimal $k$-dimensional subspace summed over the optimal $(1-alpha)n$ inliers is at least $delta$ times its squared-error summed over all $n$ points, for some $0 < delta leq 1 - alpha$. With this assumption, we give an efficient algorithm to find a subset of $poly(k/epsilon) log(1/delta) loglog(1/delta)$ points whose span contains a $k$-dimensional subspace that gives a multiplicative $(1+epsilon)$-approximation to the optimal solution. The running time of our algorithm is linear in $n$ and $d$. Interestingly, our results hold even when the fraction of outliers $alpha$ is large, as long as the obvious condition $0 < delta leq 1 - alpha$ is satisfied.
158 - Tyler Maunu , Gilad Lerman 2019
We study the problem of robust subspace recovery (RSR) in the presence of adversarial outliers. That is, we seek a subspace that contains a large portion of a dataset when some fraction of the data points are arbitrarily corrupted. We first examine a theoretical estimator that is intractable to calculate and use it to derive information-theoretic bounds of exact recovery. We then propose two tractable estimators: a variant of RANSAC and a simple relaxation of the theoretical estimator. The two estimators are fast to compute and achieve state-of-the-art theoretical performance in a noiseless RSR setting with adversarial outliers. The former estimator achieves better theoretical guarantees in the noiseless case, while the latter estimator is robust to small noise, and its guarantees significantly improve with non-adversarial models of outliers. We give a complete comparison of guarantees for the adversarial RSR problem, as well as a short discussion on the estimation of affine subspaces.
In recent years, federated learning has been embraced as an approach for bringing about collaboration across large populations of learning agents. However, little is known about how collaboration protocols should take agents incentives into account w hen allocating individual resources for communal learning in order to maintain such collaborations. Inspired by game theoretic notions, this paper introduces a framework for incentive-aware learning and data sharing in federated learning. Our stable and envy-free equilibria capture notions of collaboration in the presence of agents interested in meeting their learning objectives while keeping their own sample collection burden low. For example, in an envy-free equilibrium, no agent would wish to swap their sampling burden with any other agent and in a stable equilibrium, no agent would wish to unilaterally reduce their sampling burden. In addition to formalizing this framework, our contributions include characterizing the structural properties of such equilibria, proving when they exist, and showing how they can be computed. Furthermore, we compare the sample complexity of incentive-aware collaboration with that of optimal collaboration when one ignores agents incentives.
In this paper, we propose a new multi-armed bandit problem called the Gamblers Ruin Bandit Problem (GRBP). In the GRBP, the learner proceeds in a sequence of rounds, where each round is a Markov Decision Process (MDP) with two actions (arms): a conti nuation action that moves the learner randomly over the state space around the current state; and a terminal action that moves the learner directly into one of the two terminal states (goal and dead-end state). The current round ends when a terminal state is reached, and the learner incurs a positive reward only when the goal state is reached. The objective of the learner is to maximize its long-term reward (expected number of times the goal state is reached), without having any prior knowledge on the state transition probabilities. We first prove a result on the form of the optimal policy for the GRBP. Then, we define the regret of the learner with respect to an omnipotent oracle, which acts optimally in each round, and prove that it increases logarithmically over rounds. We also identify a condition under which the learners regret is bounded. A potential application of the GRBP is optimal medical treatment assignment, in which the continuation action corresponds to a conservative treatment and the terminal action corresponds to a risky treatment such as surgery.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا