ﻻ يوجد ملخص باللغة العربية
We address the interpretation proposed in [S. H. Simon, arXiv:1801.09687] of the thermal conductance data from [M. Banerjee et al., arXiv:1710.00492]. We show that the interpretation is inconsistent with experimental data and the sample structure. In particular, the paper misses the momentum mismatch between contra-propagating modes. Contrary to the claim of the paper, low energy tunneling involves a large momentum change. We consider only the small Majorana velocity mechanism [S. H. Simon, arXiv:1801.09687]. Other mechanisms, interpretations of the experiment, and their difficulties are beyond the scope of this Comment.
Recent experiments [Banerjee et al, arXiv:1710.00492] have measured thermal conductance of the nu=5/2 edge in a GaAs electron gas and found it to be quantized as K approx 5/2 (in appropriate dimensionless units). This result is unexpected, as prior n
We comment on some misleading and biased statements appearing in the manuscript arXiv:1209.0298 (Thermal fluctuations of magnetic nanoparticles) about the use of the damped Landau-Lifshitz equation and the kinetic Langer theory for the calculation of
Recent schemes for experimentally probing non-abelian statistics in the quantum Hall effect are based on geometries where current-carrying quasiparticles flow along edges that encircle bulk quasiparticles, which are localized. Here we consider one su
We report on results of numerical studies of the spin polarization of the half filled second Landau level, which corresponds to the fractional quantum Hall state at filling factor $ u=5/2$. Our studies are performed using both exact diagonalization a
We report on the dramatic evolution of the quantum Hall ferromagnet in the fractional quantum Hall regime at $ u = 2/5$ filling. A large enhancement in the characteristic timescale gives rise to a dynamical transition into a novel quantized Hall stat