ﻻ يوجد ملخص باللغة العربية
Recent experiments [Banerjee et al, arXiv:1710.00492] have measured thermal conductance of the nu=5/2 edge in a GaAs electron gas and found it to be quantized as K approx 5/2 (in appropriate dimensionless units). This result is unexpected, as prior numerical work predicts that the nu=5/2 state should be the Anti-Pfaffian phase of matter, which should have quantized K=3/2. The purpose of this paper is to propose a possible solution to this conflict: if the Majorana edge mode of the Anti-Pfaffian does not thermally equilibrate with the other edge modes, then K=5/2 is expected. I briefly discuss a possible reason for this nonequilibration, and what should be examined further to determine if this is the case.
We address the interpretation proposed in [S. H. Simon, arXiv:1801.09687] of the thermal conductance data from [M. Banerjee et al., arXiv:1710.00492]. We show that the interpretation is inconsistent with experimental data and the sample structure. In
We study quasiparticle tunneling between the edges of a non-Abelian topological state. The simplest examples are a p+ip superconductor and the Moore-Read Pfaffian non-Abelian fractional quantum Hall state; the latter state may have been observed at L
When a gas of electrons is confined to two dimensions, application of a strong magnetic field may lead to startling phenomena such as emergence of electron pairing. According to a theory this manifests itself as appearance of the fractional quantum H
Recent schemes for experimentally probing non-abelian statistics in the quantum Hall effect are based on geometries where current-carrying quasiparticles flow along edges that encircle bulk quasiparticles, which are localized. Here we consider one su
Resistively detected nuclear magnetic resonance is used to measure the Knight shift of the As nuclei and determine the electron spin polarization of the fractional quantum Hall states of the second Landau level. We show that the 5/2 state is fully po