ﻻ يوجد ملخص باللغة العربية
We comment on some misleading and biased statements appearing in the manuscript arXiv:1209.0298 (Thermal fluctuations of magnetic nanoparticles) about the use of the damped Landau-Lifshitz equation and the kinetic Langer theory for the calculation of the relaxation rate of magnetic nanoclusters. We reiterate simple scientific arguments, part of which is well known to the whole community, demonstrating that the authors criticisms are unfounded and that they overstate the issue of damping in the Landau-Lifshitz equation with no unanimous experimental evidence.
We address the interpretation proposed in [S. H. Simon, arXiv:1801.09687] of the thermal conductance data from [M. Banerjee et al., arXiv:1710.00492]. We show that the interpretation is inconsistent with experimental data and the sample structure. In
We recently reported [1,2] measurements of the charge density fluctuations in the strange metal cuprate Bi$_{2.1}$Sr$_{1.9}$Ca$_{1.0}$Cu$_{2.0}$O$_{8+x}$ using both reflection M-EELS and transmission EELS with $leq$10 meV energy resolution. We observ
Recent demonstrations on manipulating antiferromagnetic (AF) order have triggered a growing interest in antiferromagnetic metal (AFM), and potential high-density spintronic applications demand further improvements in the anisotropic magnetoresistance
The finite size and surface roughness effects on the magnetization of NiO nanoparticles is investigated. A large magnetic moment arises for an antiferromagnetic nanoparticle due to these effects. The magnetic moment without the surface roughness has
Superlubricity, or alternatively termed structural (super)lubrictiy, is a concept where ultra-low friction is expected at the interface between sliding surfaces if these surfaces are incommensurate and thus unable to interlock. In this work, we now r