ﻻ يوجد ملخص باللغة العربية
The liquid-phase exfoliation (LPE) of black phosphorus (BP) is a strategic route for the large-scale production of phosphorene and few-layer BP (FL-BP) flakes. The exploitation of this exfoliated material in cutting-edge technologies, e.g., in flexible electronics and energy storage, is however limited by the fact that the LPE of BP is usually carried out at a high boiling point and in toxic solvents. In fact, the solvent residual is detrimental to device performance in real applications; thus, complete solvent removal is critical. Here, we tackle these issues by exfoliating BP in different low boiling-point solvents. Among these solvents, we find that acetone also provides a high concentration of exfoliated BP, leading to the production of FL-BP flakes with an average lateral size and thickness of c.a. 30 and 7 nm, respectively. The use of acetone to produce less defective few-layer BP flakes (FL-BPacetone) from bulk crystals is a straightforward process which enables the rapid preparation of homogeneous thin films thanks to the fast solvent evaporation. The ratio of edge to bulk atoms for the BP flakes here produced, combined with the use of low-boiling-point solvents for the exfoliation process suggests that these thin films are promising anodes for lithium-ion batteries. To this end, we tested Li-ion half cells with FL-BPacetone anodes achieving a reversible specific capacity of 480 mAh/g at a current density of 100 mA/g, over 100 charge/discharge cycles. Moreover, a reversible specific capacity of 345 mAh/g is achieved for the FL-BPacetone-based anode at a high current density (i.e., 1 A/g). These findings indicate that the FL-BPacetone-based battery is promising with regards to the design of fast charge/discharge devices. Overall, the presented process is a step forward toward the fabrication of phosphorene-based devices.
Phosphorus atomic chains, the utmost-narrow nanostructures of black phosphorus (BP), are highly relevant to the in-depth development of BP into one-dimensional (1D) regime. In this contribution, we report a top-down route to prepare atomic chains of
Black phosphorus (BP) has recently emerged as an alternative 2D semiconductor owing to its fascinating electronic properties such as tunable bandgap and high charge carrier mobility. The structural investigation of few-layer BP, such as identificatio
An outstanding challenge of theoretical electronic structure is the description of van der Waals (vdW) interactions in molecules and solids. Renewed interest in resolving this is in part motivated by the technological promise of layered systems inclu
Recent experimental measurements of light absorption in few-layer black phosphorus (BP) reveal a series of high and sharp peaks, interspersed by pairs of lower and broader features. Here, we propose a theoretical model for these excitonic states in f
Forthcoming applications in electronics and optoelectronics make phosphorene a subject of vigorous research efforts. Solvent-assisted exfoliation of phosphorene promises affordable delivery in industrial quantities for future applications. We demonst