ﻻ يوجد ملخص باللغة العربية
An outstanding challenge of theoretical electronic structure is the description of van der Waals (vdW) interactions in molecules and solids. Renewed interest in resolving this is in part motivated by the technological promise of layered systems including graphite, transition metal dichalcogenides, and more recently, black phosphorus, in which the interlayer interaction is widely believed to be dominated by these types of forces. We report a series of quantum Monte Carlo (QMC) calculations for bulk black phosphorus and related few-layer phosphorene, which elucidate the nature of the forces that bind these systems and provide benchmark data for the energetics of these systems. We find a significant charge redistribution due to the interaction between electrons on adjacent layers. Comparison to density functional theory (DFT) calculations indicate not only wide variability even among different vdW corrected functionals, but the failure of these functionals to capture the trend of reorganization predicted by QMC. The delicate interplay of steric and dispersive forces between layers indicate that few-layer phosphorene presents an unexpected challenge for the development of vdW corrected DFT.
We demonstrate that surface relaxation, which is insignificant in trilayer graphene, starts to manifest in Bernal-stacked tetralayer graphene. Bernal-stacked few-layer graphene has been investigated by analyzing its Landau level spectra through quant
Phosphorus atomic chains, the utmost-narrow nanostructures of black phosphorus (BP), are highly relevant to the in-depth development of BP into one-dimensional (1D) regime. In this contribution, we report a top-down route to prepare atomic chains of
Black Phosphorus (bP) has emerged as an interesting addition to the category of two-dimensional materials. Surface-science studies on this material are of great interest, but they are hampered by bPs high reactivity to oxygen and water, a major chall
The puckered surface of black phosphorus represents an ideal substrate for an unconventional arrangement of physisorbed species and the resulting specific two-dimensional chemistry of this system. This opens the way to investigate the chemical and ph
Using first-principles calculations, we have investigated the evolution of band-edges in few-layer phosphorene as a function of the number of P layers. Our results predict that monolayer phosphorene is an indirect band gap semiconductor and its valen