ترغب بنشر مسار تعليمي؟ اضغط هنا

Imidazolium Ionic Liquid Mediates Black Phosphorus Exfoliation while Preventing Phosphorene Decomposition

174   0   0.0 ( 0 )
 نشر من قبل Vitaly Chaban
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Forthcoming applications in electronics and optoelectronics make phosphorene a subject of vigorous research efforts. Solvent-assisted exfoliation of phosphorene promises affordable delivery in industrial quantities for future applications. We demonstrate, using equilibrium, steered and umbrella sampling molecular dynamics, that the 1-ethyl-3- methylimidazolium tetrafluoroborate [EMIM][BF4] ionic liquid is an excellent solvent for phosphorene exfoliation. The presence of both hydrophobic and hydrophilic moieties, as well as substantial shear viscosity, allows [EMIM][BF4] simultaneously to facilitate separation of phosphorene sheets and to protect them from getting in direct contact with moisture and oxygen. The exfoliation thermodynamics is moderately unfavorable, indicating that an external stimulus is necessary. Unexpectedly, [EMIM][BF4] does not coordinates phosphorene by p-electron stacking with the imidazole ring. Instead, the solvation proceeds via hydrophobic side chains, while polar imidazole rings form an electrostatically stabilized protective layer. The simulations suggest that further efforts in solvent engineering for phosphorene exfoliation should concentrate on use of weakly coordinating ions and grafting groups that promote stronger dispersion interactions, and on elongation of nonpolar chains.

قيم البحث

اقرأ أيضاً

The two-dimensional semiconductor phosphorene has attracted extensive research interests for potential applications in optoelectronics, spintronics, catalysis, sensors, and energy conversion. To harness phosphorenes potential requires a better unders tanding of how intrinsic defects control carrier concentration, character, and mobility. Using density-functional theory and a charge correction scheme to account for the appropriate boundary conditions, we conduct a comprehensive study of the effect of structure on the formation energy, electronic structure, and charge transition level of the charged vacancy point defects in phosphorene. We predict that the neutral vacancy exhibits a 9-5 ring structure with a formation energy of 1.7 eV and transitions to a negatively charged state at a Fermi level 1.04 eV above the valence band maximum. The corresponding optical charge transitions display sizeable Frank-Condon shifts with a large Stokes shift of 0.3 eV. Phosphorene vacancies should become negatively charged in n-doped phosphorene, which would passivate the dopants and reduce the charge carrier concentration and mobility.
Few layer black phosphorus is a new two-dimensional material which is of great interest for applications, mainly in electronics. However, its lack of stability severely limits our ability to synthesise and process this material. Here we demonstrate t hat high-quality, few-layer black phosphorus nanosheets can be produced in large quantities by liquid phase exfoliation in the solvent N-cyclohexyl-2-pyrrolidone (CHP). We can control nanosheet dimensions and have developed metrics to estimate both nanosheet size and thickness spectroscopically. When exfoliated in CHP, the nanosheets are remarkably stable unless water is intentionally introduced. Computational studies show the degradation to occur by reaction with water molecules only at the nanosheet edge, leading to the removal of phosphorus atoms and the formation of phosphine and phosphorous acid. We demonstrate that liquid exfoliated black phosphorus nanosheets are potentially useful in a range of applications from optical switches to gas sensors to fillers for composite reinforcement.
The liquid-phase exfoliation (LPE) of black phosphorus (BP) is a strategic route for the large-scale production of phosphorene and few-layer BP (FL-BP) flakes. The exploitation of this exfoliated material in cutting-edge technologies, e.g., in flexib le electronics and energy storage, is however limited by the fact that the LPE of BP is usually carried out at a high boiling point and in toxic solvents. In fact, the solvent residual is detrimental to device performance in real applications; thus, complete solvent removal is critical. Here, we tackle these issues by exfoliating BP in different low boiling-point solvents. Among these solvents, we find that acetone also provides a high concentration of exfoliated BP, leading to the production of FL-BP flakes with an average lateral size and thickness of c.a. 30 and 7 nm, respectively. The use of acetone to produce less defective few-layer BP flakes (FL-BPacetone) from bulk crystals is a straightforward process which enables the rapid preparation of homogeneous thin films thanks to the fast solvent evaporation. The ratio of edge to bulk atoms for the BP flakes here produced, combined with the use of low-boiling-point solvents for the exfoliation process suggests that these thin films are promising anodes for lithium-ion batteries. To this end, we tested Li-ion half cells with FL-BPacetone anodes achieving a reversible specific capacity of 480 mAh/g at a current density of 100 mA/g, over 100 charge/discharge cycles. Moreover, a reversible specific capacity of 345 mAh/g is achieved for the FL-BPacetone-based anode at a high current density (i.e., 1 A/g). These findings indicate that the FL-BPacetone-based battery is promising with regards to the design of fast charge/discharge devices. Overall, the presented process is a step forward toward the fabrication of phosphorene-based devices.
Phosphorus atomic chains, the utmost-narrow nanostructures of black phosphorus (BP), are highly relevant to the in-depth development of BP into one-dimensional (1D) regime. In this contribution, we report a top-down route to prepare atomic chains of BP via electron beam sculpting inside a transmission electron microscope (TEM). The growth and dynamics (i.e. rupture and edge migration) of 1D phosphorus chains are experimentally captured for the first time. Furthermore, the dynamic behaviors and associated energetics of the as-formed phosphorus chains are further corroborated by density functional theory (DFT) calculations. The 1D counterpart of BP will serve as a novel platform and inspire further exploration of the versatile properties of BP.
Exfoliated black phosphorus has recently emerged as a new two-dimensional crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have potentially important applications in electronics, optoelectronics and ph otonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and the behavior of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا