ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust Design of Power Minimizing Symbol-Level Precoder under Channel Uncertainty

153   0   0.0 ( 0 )
 نشر من قبل Farbod Kayhan
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we investigate the downlink transmission of a multiuser multiple-input single-output (MISO) channel under a symbol-level precoding (SLP) scheme, having imperfect channel knowledge at the transmitter. In defining the SLP problem, a general category of constructive interference regions (CIR) called distance preserving CIR (DPCIR) is adopted. In particular, we are interested in the robust SLP design minimizing the total transmit power while satisfying the users quality-of-service (QoS) requirements. We consider two common models for the channel uncertainty region, namely, norm-bounded spherical and stochastic. For the spherical uncertainty model, a worst-case robust precoder is proposed, while for the stochastic uncertainties, we define a convex optimization problem with probabilistic constraints. We simulate the performance of the proposed robust approaches, and compare them with the existing methods. Through the simulation results, we also show that there is an essential trade-off between the two robust approaches.



قيم البحث

اقرأ أيضاً

Recently, multi-user multiple input multiple output (MU-MIMO) systems with low-resolution digital-to-analog converters (DACs) has received considerable attention, owing to the capability of dramatically reducing the hardware cost. Besides, it has bee n shown that the use of low-resolution DACs enable great reduction in power consumption while maintain the performance loss within acceptable margin, under the assumption of perfect knowledge of channel state information (CSI). In this paper, we investigate the precoding problem for the coarsely quantized MU-MIMO system without such an assumption. The channel uncertainties are modeled to be a random matrix with finite second-order statistics. By leveraging a favorable relation between the multi-bit DACs outputs and the single-bit ones, we first reformulate the original complex precoding problem into a nonconvex binary optimization problem. Then, using the S-procedure lemma, the nonconvex problem is recast into a tractable formulation with convex constraints and finally solved by the semidefinite relaxation (SDR) method. Compared with existing representative methods, the proposed precoder is robust to various channel uncertainties and is able to support a MUMIMO system with higher-order modulations, e.g., 16QAM.
In this paper, we investigate the symbol-level precoding (SLP) design problem in the downlink of a multiuser multiple-input single-output (MISO) channel. We consider generic constellations with any arbitrary shape and size, and confine ourselves to o ne of the main categories of constructive interference regions (CIR), namely, distance preserving CIR (DPCIR). We provide a comprehensive study of DPCIRs and derive some properties for these regions. Using these properties, we first show that any signal in a given DPCIR has a norm greater than or equal to the norm of the corresponding constellation point if and only if the convex hull of the constellation contains the origin. It is followed by proving that the power of the noiseless received signal lying on a DPCIR is a monotonic strictly increasing function of two parameters relating to the infinite Voronoi edges. Using the convex description of DPCIRs and their properties, we formulate two design problems, namely, the SLP power minimization with signal-to-interference-plus-noise ratio (SINR) constraints, and the SLP SINR balancing problem under max-min fairness criterion. The SLP power minimization based on DPCIRs can straightforwardly be written as a quadratic program (QP). We provide a simplified reformulation of this problem which is less computationally complex. The SLP max-min SINR, however, is non-convex in its original form, and hence difficult to tackle. We propose several alternative optimization approaches, including semidefinite program (SDP) formulation and block coordinate descent (BCD) optimization. We discuss and evaluate the loss due to the proposed alternative methods through extensive simulation results.
In this letter, we study the optimal solution of the multiuser symbol-level precoding (SLP) for minimization of the total transmit power under given signal-to-interference-plus-noise ratio (SINR) constraints. Adopting the distance preserving construc tive interference regions (DPCIR), we first derive a simplified reformulation of the problem. Then, we analyze the structure of the optimal solution using the Karush-Kuhn-Tucker (KKT) optimality conditions, thereby we obtain the necessary and sufficient condition under which the power minimizer SLP is equivalent to the conventional zero-forcing beamforming (ZFBF). This further leads us to a closed-form sub-optimal SLP solution (CF-SLP) for the original problem. Simulation results show that CF-SLP provides significant gains over ZFBF, while performing quite close to the optimal SLP in scenarios with rather small number of users. The results further indicate that the CF-SLP method has a reduction of order $10^3$ in computational time compared to the optimal solution.
98 - Zihao Cheng , Jiangbo Si , Zan Li 2020
Surveillance performance is studied for a wireless eavesdropping system, where a full-duplex legitimate monitor eavesdrops a suspicious link efficiently with the artificial noise (AN) assistance. Different from the existing work in the literature, th e suspicious receiver in this paper is assumed to be capable of detecting the presence of AN. Once such receiver detects the AN, the suspicious user will stop transmission, which is harmful for the surveillance performance. Hence, to improve the surveillance performance, AN should be transmitted covertly with a low detection probability by the suspicious receiver. Under these assumptions, an optimization problem is formulated to maximize the eavesdropping non-outage probability under a covert constraint. Based on the detection ability at the suspicious receiver, a novel scheme is proposed to solve the optimization problem by iterative search. Moreover, we investigate the impact of both the suspicious link uncertainty and the jamming link uncertainty on the covert surveillance performance. Simulations are performed to verify the analyses. We show that the suspicious link uncertainty benefits the surveillance performance, while the jamming link uncertainty can degrade the surveillance performance.
The integration of unmanned aerial vehicles (UAVs) into the terrestrial cellular networks is envisioned as one key technology for next-generation wireless communications. In this work, we consider the physical layer security of the communications lin ks in the millimeter-wave (mmWave) spectrum which are maintained by UAVs functioning as base stations (BS). In particular, we propose a new precoding strategy which incorporates the channel state information (CSI) of the eavesdropper (Eve) compromising link security. We show that our proposed precoder strategy eliminates any need for artificial noise (AN) transmission in underloaded scenarios (fewer users than number of antennas). In addition, we demonstrate that our nonlinear precoding scheme provides promising secrecy-rate performance even for overloaded scenarios at the expense of transmitting low-power AN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا