ترغب بنشر مسار تعليمي؟ اضغط هنا

Power Minimizer Symbol-Level Precoding: A Closed-Form Sub-Optimal Solution

135   0   0.0 ( 0 )
 نشر من قبل Farbod Kayhan
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

In this letter, we study the optimal solution of the multiuser symbol-level precoding (SLP) for minimization of the total transmit power under given signal-to-interference-plus-noise ratio (SINR) constraints. Adopting the distance preserving constructive interference regions (DPCIR), we first derive a simplified reformulation of the problem. Then, we analyze the structure of the optimal solution using the Karush-Kuhn-Tucker (KKT) optimality conditions, thereby we obtain the necessary and sufficient condition under which the power minimizer SLP is equivalent to the conventional zero-forcing beamforming (ZFBF). This further leads us to a closed-form sub-optimal SLP solution (CF-SLP) for the original problem. Simulation results show that CF-SLP provides significant gains over ZFBF, while performing quite close to the optimal SLP in scenarios with rather small number of users. The results further indicate that the CF-SLP method has a reduction of order $10^3$ in computational time compared to the optimal solution.



قيم البحث

اقرأ أيضاً

In this paper, we investigate the symbol-level precoding (SLP) design problem in the downlink of a multiuser multiple-input single-output (MISO) channel. We consider generic constellations with any arbitrary shape and size, and confine ourselves to o ne of the main categories of constructive interference regions (CIR), namely, distance preserving CIR (DPCIR). We provide a comprehensive study of DPCIRs and derive some properties for these regions. Using these properties, we first show that any signal in a given DPCIR has a norm greater than or equal to the norm of the corresponding constellation point if and only if the convex hull of the constellation contains the origin. It is followed by proving that the power of the noiseless received signal lying on a DPCIR is a monotonic strictly increasing function of two parameters relating to the infinite Voronoi edges. Using the convex description of DPCIRs and their properties, we formulate two design problems, namely, the SLP power minimization with signal-to-interference-plus-noise ratio (SINR) constraints, and the SLP SINR balancing problem under max-min fairness criterion. The SLP power minimization based on DPCIRs can straightforwardly be written as a quadratic program (QP). We provide a simplified reformulation of this problem which is less computationally complex. The SLP max-min SINR, however, is non-convex in its original form, and hence difficult to tackle. We propose several alternative optimization approaches, including semidefinite program (SDP) formulation and block coordinate descent (BCD) optimization. We discuss and evaluate the loss due to the proposed alternative methods through extensive simulation results.
In this paper, we investigate the downlink transmission of a multiuser multiple-input single-output (MISO) channel under a symbol-level precoding (SLP) scheme, having imperfect channel knowledge at the transmitter. In defining the SLP problem, a gene ral category of constructive interference regions (CIR) called distance preserving CIR (DPCIR) is adopted. In particular, we are interested in the robust SLP design minimizing the total transmit power while satisfying the users quality-of-service (QoS) requirements. We consider two common models for the channel uncertainty region, namely, norm-bounded spherical and stochastic. For the spherical uncertainty model, a worst-case robust precoder is proposed, while for the stochastic uncertainties, we define a convex optimization problem with probabilistic constraints. We simulate the performance of the proposed robust approaches, and compare them with the existing methods. Through the simulation results, we also show that there is an essential trade-off between the two robust approaches.
In this paper, we propose a low-complexity method to approximately solve the SINR-constrained optimization problem of symbol-level precoding (SLP). First, assuming a generic modulation scheme, the precoding optimization problem is recast as a standar d non-negative least squares (NNLS). Then, we improve an existing closed-form SLP (CF-SLP) scheme using the conditions for nearly perfect recovery of the optimal solution support, followed by solving a reduced system of linear equations. We show through simulation results that in comparison with the CF-SLP method, the improved approximate solution of this paper, referred to as ICF-SLP, significantly enhances the performance with a negligible increase in complexity. We also provide comparisons with a fast-converging iterative NNLS algorithm, where it is shown that the ICF-SLP method is comparable in performance to the iterative algorithm with a limited maximum number of iterations. Analytic discussions on the complexities of different methods are provided, verifying the computational efficiency of the proposed method. Our results further indicate that the ICF-SLP scheme performs quite close to the optimal SLP, particularly in the large system regime.
Mobile edge computing (MEC) has recently emerged as a promising technology to release the tension between computation-intensive applications and resource-limited mobile terminals (MTs). In this paper, we study the delay-optimal computation offloading in computation-constrained MEC systems. We consider the computation task queue at the MEC server due to its constrained computation capability. In this case, the task queue at the MT and that at the MEC server are strongly coupled in a cascade manner, which creates complex interdependencies and brings new technical challenges. We model the computation offloading problem as an infinite horizon average cost Markov decision process (MDP), and approximate it to a virtual continuous time system (VCTS) with reflections. Different to most of the existing works, we develop the dynamic instantaneous rate estimation for deriving the closed-form approximate priority functions in different scenarios. Based on the approximate priority functions, we propose a closed-form multi-level water-filling computation offloading solution to characterize the influence of not only the local queue state information (LQSI) but also the remote queue state information (RQSI). A extension is provided from single MT single MEC server scenarios to multiple MTs multiple MEC servers scenarios and several insights are derived. Finally, the simulation results show that the proposed scheme outperforms the conventional schemes.
260 - Rang Liu , Ming Li , Qian Liu 2021
Dual-functional radar-communication (DFRC) systems can simultaneously perform both radar and communication functionalities using the same hardware platform and spectrum resource. In this paper, we consider multi-input multi-output (MIMO) DFRC systems and focus on transmit beamforming designs to provide both radar sensing and multi-user communications. Unlike conventional block-level precoding techniques, we propose to use the recently emerged symbol-level precoding approach in DFRC systems, which provides additional degrees of freedom (DoFs) that guarantee preferable instantaneous transmit beampatterns for radar sensing and achieve better communication performance. In particular, the squared error between the designed and desired beampatterns is minimized subject to the quality-of-service (QoS) requirements of the communication users and the constant-modulus power constraint. Two efficient algorithms are developed to solve this non-convex problem on both the Euclidean and Riemannian spaces. The first algorithm employs penalty dual decomposition (PDD), majorization-minimization (MM), and block coordinate descent (BCD) methods to convert the original optimization problem into two solvable sub-problems, and iteratively solves them using efficient algorithms. The second algorithm provides a much faster solution at the price of a slight performance loss, first transforming the original problem into Riemannian space, and then utilizing the augmented Lagrangian method (ALM) to obtain an unconstrained problem that is subsequently solved via a Riemannian Broyden-Fletcher-Goldfarb-Shanno (RBFGS) algorithm. Extensive simulations verify the distinct advantages of the proposed symbol-level precoding designs in both radar sensing and multi-user communications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا