ﻻ يوجد ملخص باللغة العربية
A set of vertices $W$ in a graph $G$ is called resolving if for any two distinct $x,yin V(G)$, there is $vin W$ such that ${rm dist}_G(v,x) eq{rm dist}_G(v,y)$, where ${rm dist}_G(u,v)$ denotes the length of a shortest path between $u$ and $v$ in the graph $G$. The metric dimension ${rm md}(G)$ of $G$ is the minimum cardinality of a resolving set. The Metric Dimension problem, i.e. deciding whether ${rm md}(G)le k$, is NP-complete even for interval graphs (Foucaud et al., 2017). We study Metric Dimension (for arbitrary graphs) from the lens of parameterized complexity. The problem parameterized by $k$ was proved to be $W[2]$-hard by Hartung and Nichterlein (2013) and we study the dual parameterization, i.e., the problem of whether ${rm md}(G)le n- k,$ where $n$ is the order of $G$. We prove that the dual parameterization admits (a) a kernel with at most $3k^4$ vertices and (b) an algorithm of runtime $O^*(4^{k+o(k)}).$ Hartung and Nichterlein (2013) also observed that Metric Dimension is fixed-parameter tractable when parameterized by the vertex cover number $vc(G)$ of the input graph. We complement this observation by showing that it does not admit a polynomial kernel even when parameterized by $vc(G) + k$. Our reduction also gives evidence for non-existence of polynomial Turing kernels.
It is known that problems like Vertex Cover, Feedback Vertex Set and Odd Cycle Transversal are polynomial time solvable in the class of chordal graphs. We consider these problems in a graph that has at most $k$ vertices whose deletion results in a ch
In this paper we revisit the classical Edge Disjoint Paths (EDP) problem, where one is given an undirected graph G and a set of terminal pairs P and asks whether G contains a set of pairwise edge-disjoint paths connecting every terminal pair in P. Ou
In the Maximum Common Induced Subgraph problem (henceforth MCIS), given two graphs $G_1$ and $G_2$, one looks for a graph with the maximum number of vertices being both an induced subgraph of $G_1$ and $G_2$. MCIS is among the most studied classical
In this article, the author proposes another way to define the completion of a metric space, which is different from the classical one via the dense property, and prove the equivalence between two definitions. This definition is based on consideratio
A fundamental problem in computational biology is the construction of phylogenetic trees, also called evolutionary trees, for a set of organisms. A graph-theoretic approach takes as input a similarity graph $G$ on the set of organisms, with adjacency