ﻻ يوجد ملخص باللغة العربية
It is known that problems like Vertex Cover, Feedback Vertex Set and Odd Cycle Transversal are polynomial time solvable in the class of chordal graphs. We consider these problems in a graph that has at most $k$ vertices whose deletion results in a chordal graph, when parameterized by $k$. While this investigation fits naturally into the recent trend of what are called `structural parameterizations, here we assume that the deletion set is not given. One method to solve them is to compute a $k$-sized or an approximate ($f(k)$ sized, for a function $f$) chordal vertex deletion set and then use the structural properties of the graph to design an algorithm. This method leads to at least $k^{mathcal{O}(k)}n^{mathcal{O}(1)}$ running time when we use the known parameterized or approximation algorithms for finding a $k$-sized chordal deletion set on an $n$ vertex graph. In this work, we design $2^{mathcal{O}(k)}n^{mathcal{O}(1)}$ time algorithms for these problems. Our algorithms do not compute a chordal vertex deletion set (or even an approximate solution). Instead, we construct a tree decomposition of the given graph in time $2^{mathcal{O}(k)}n^{mathcal{O}(1)}$ where each bag is a union of four cliques and $mathcal{O}(k)$ vertices. We then apply standard dynamic programming algorithms over this special tree decomposition. This special tree decomposition can be of independent interest. Our algorithms are adaptive (robust) in the sense that given an integer $k$, they detect whether the graph has a chordal vertex deletion set of size at most $k$ or output the special tree decomposition and solve the problem. We also show lower bounds for the problems we deal with under the Strong Exponential Time Hypothesis (SETH).
In this paper we revisit the classical Edge Disjoint Paths (EDP) problem, where one is given an undirected graph G and a set of terminal pairs P and asks whether G contains a set of pairwise edge-disjoint paths connecting every terminal pair in P. Ou
A set of vertices $W$ in a graph $G$ is called resolving if for any two distinct $x,yin V(G)$, there is $vin W$ such that ${rm dist}_G(v,x) eq{rm dist}_G(v,y)$, where ${rm dist}_G(u,v)$ denotes the length of a shortest path between $u$ and $v$ in the
Hierarchical clustering is a popular unsupervised data analysis method. For many real-world applications, we would like to exploit prior information about the data that imposes constraints on the clustering hierarchy, and is not captured by the set o
In the Maximum Common Induced Subgraph problem (henceforth MCIS), given two graphs $G_1$ and $G_2$, one looks for a graph with the maximum number of vertices being both an induced subgraph of $G_1$ and $G_2$. MCIS is among the most studied classical
Robotics and computer vision problems commonly require handling rigid-body motions comprising translation and rotation - together referred to as pose. In some situations, a vectorial parameterization of pose can be useful, where elements of a vector