ﻻ يوجد ملخص باللغة العربية
In the Maximum Common Induced Subgraph problem (henceforth MCIS), given two graphs $G_1$ and $G_2$, one looks for a graph with the maximum number of vertices being both an induced subgraph of $G_1$ and $G_2$. MCIS is among the most studied classical NP-hard problems. It remains NP-hard on many graph classes including forests. In this paper, we study the parameterized complexity of MCIS. As a generalization of textsc{Clique}, it is W[1]-hard parameterized by the size of the solution. Being NP-hard even on forests, most structural parameterizations are intractable. One has to go as far as parameterizing by the size of the minimum vertex cover to get some tractability. Indeed, when parameterized by $k := text{vc}(G_1)+text{vc}(G_2)$ the sum of the vertex cover number of the two input graphs, the problem was shown to be fixed-parameter tractable, with an algorithm running in time $2^{O(k log k)}$. We complement this result by showing that, unless the ETH fails, it cannot be solved in time $2^{o(k log k)}$. This kind of tight lower bound has been shown for a few problems and parameters but, to the best of our knowledge, not for the vertex cover number. We also show that MCIS does not have a polynomial kernel when parameterized by $k$, unless $NP subseteq mathsf{coNP}/poly$. Finally, we study MCIS and its connected variant MCCIS on some special graph classes and with respect to other structural parameters.
Given a graph $F$, let $I(F)$ be the class of graphs containing $F$ as an induced subgraph. Let $W[F]$ denote the minimum $k$ such that $I(F)$ is definable in $k$-variable first-order logic. The recognition problem of $I(F)$, known as Induced Subgrap
Let $v(F)$ denote the number of vertices in a fixed connected pattern graph $F$. We show an infinite family of patterns $F$ such that the existence of a subgraph isomorphic to $F$ is expressible by a first-order sentence of quantifier depth $frac23,v
Let $F$ be a connected graph with $ell$ vertices. The existence of a subgraph isomorphic to $F$ can be defined in first-order logic with quantifier depth no better than $ell$, simply because no first-order formula of smaller quantifier depth can dist
The complexity of the maximum common connected subgraph problem in partial $k$-trees is still not fully understood. Polynomial-time solutions are known for degree-bounded outerplanar graphs, a subclass of the partial $2$-trees. On the other hand, the
We propose a weighted common subgraph (WCS) matching algorithm to find the most similar subgraphs in two labeled weighted graphs. WCS matching, as a natural generalization of the equal-sized graph matching or subgraph matching, finds wide application