ﻻ يوجد ملخص باللغة العربية
In crystal growth, surfactants are additive molecules used in dilute amount or as dense, permeable layers to control surface morphologies. Here, we investigate the properties of a strikingly different surfactant: a two-dimensional and covalent layer with close atomic packing, graphene. Using in situ, real time electron microscopy, scanning tunneling microscopy, kinetic Monte Carlo simulations, and continuum mechanics calculations, we reveal why metallic atomic layers can grow in a two-dimensional manner below an impermeable graphene membrane. Upon metal growth, graphene dynamically opens nanochannels called wrinkles, facilitating mass transport, while at the same time storing and releasing elastic energy via lattice distortions. Graphene thus behaves as a mechanically active, deformable surfactant. The wrinkle-driven mass transport of the metallic layer intercalated between graphene and the substrate is observed for two graphene-based systems, characterized by different physico-chemical interactions, between graphene and the substrate, and between the intercalated material and graphene. The deformable surfactant character of graphene that we unveil should then apply to a broad variety of species, opening new avenues for using graphene as a two-dimensional surfactant forcing the growth of flat films, nanostructures and unconventional crystalline phases.
There are a number of theoretical proposals based on strain engineering of graphene and other two-dimensional materials, however purely mechanical control of strain fields in these systems has remained a major challenge. The two approaches mostly use
Graphene is considered one of the most promising materials for future electronic. However, in its pristine form graphene is a gapless material, which imposes limitations to its use in some electronic applications. In order to solve this problem many
A two-dimensional carbon allotrope, Stone-Wales graphene, is identified in stochastic group and graph constrained searches and systematically investigated by first-principles calculations. Stone-Wales graphene consists of well-arranged Stone-Wales de
Using a gold (111) surface as a substrate we have grown in situ by molecular beam epitaxy an atom-thin, ordered, two-dimensional multi-phase film. Its growth bears strong similarity with the formation of silicene layers on silver (111) templates. One
Two-dimensional (2D) Stiefel-Whitney insulator (SWI), which is characterized by the second Stiefel-Whitney class, is a new class of topological phases with zero Berry curvature. As a novel topological state, it has been well studied in theory but sel