ﻻ يوجد ملخص باللغة العربية
In this work, our statements are based on the progress of current research on superatomic clusters. Combining the new trend of materials and device manufacture at the atomic level, we analyzed the opportunities for the development based on the use of superatomic clusters as units of functional materials, and presented a foresight of this new branch of science with relevant studies on superatoms.
Geometry, electronic structure, and magnetic properties of methylthiolate-stabilized Au$_{25}$L$_{18}$ and MnAu$_{24}$L$_{18}$ (L = SCH$_3$) clusters adsorbed on noble-metal (111) surfaces have been investigated by using spin-polarized density functi
Despite the tremendous advances made by the ab initio theory of electronic structure of atoms and molecules, its applications are still not possible for very large systems. Therefore, semi-empirical model Hamiltonians based on the zero-differential o
Solving the atomic structure of metallic clusters is fundamental to understanding their optical, electronic, and chemical properties. We report the structure of Au$_{text{146}}$(p-MBA)$_{text{57}}$ at subatomic resolution (0.85 {AA}) using electron d
Intermolecular bonding of 3-aminopropanol (3-AP) molecules is discussed in comparison to 2-aminopropanol (2-AP) and 2-aminoethamol (2-AE). The consideration is based on the results of nonempirical quantum chemical simulations of the molecular cluster
We propose and demonstrate a momentum filter for atomic gas based on a designed Talbot-Lau interferometer. It consists in two identical optical standing wave pulses separated by a delay equal to odd multiples of the half Talbot time. The one dimensio